IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v97y2006i8p1757-1765.html
   My bibliography  Save this article

Choosing joint distributions so that the variance of the sum is small

Author

Listed:
  • Knott, Martin
  • Smith, Cyril

Abstract

The paper considers how to choose the joint distribution of several random variables each with a given marginal distribution so that their sum has a variance as small as possible. A theorem is given that allows the solution of this and of related problems for normal random variables. Several specific applications are given. Additional results are provided for radially symmetric joint distributions of three random variables when the sum is identically zero.

Suggested Citation

  • Knott, Martin & Smith, Cyril, 2006. "Choosing joint distributions so that the variance of the sum is small," Journal of Multivariate Analysis, Elsevier, vol. 97(8), pages 1757-1765, September.
  • Handle: RePEc:eee:jmvana:v:97:y:2006:i:8:p:1757-1765
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00014-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dowson, D. C. & Landau, B. V., 1982. "The Fréchet distance between multivariate normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 12(3), pages 450-455, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruodu Wang & Liang Peng & Jingping Yang, 2013. "Bounds for the sum of dependent risks and worst Value-at-Risk with monotone marginal densities," Finance and Stochastics, Springer, vol. 17(2), pages 395-417, April.
    2. Wang, Bin & Wang, Ruodu, 2011. "The complete mixability and convex minimization problems with monotone marginal densities," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1344-1360, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elham Yousefi & Luc Pronzato & Markus Hainy & Werner G. Müller & Henry P. Wynn, 2023. "Discrimination between Gaussian process models: active learning and static constructions," Statistical Papers, Springer, vol. 64(4), pages 1275-1304, August.
    2. Rippl, Thomas & Munk, Axel & Sturm, Anja, 2016. "Limit laws of the empirical Wasserstein distance: Gaussian distributions," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 90-109.
    3. Zhongzhi Lawrence He, 2018. "Comparing Asset Pricing Models: Distance-based Metrics and Bayesian Interpretations," Papers 1803.01389, arXiv.org.
    4. Mordant, Gilles & Segers, Johan, 2022. "Measuring dependence between random vectors via optimal transport," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    5. Whiteley, Nick, 2021. "Dimension-free Wasserstein contraction of nonlinear filters," Stochastic Processes and their Applications, Elsevier, vol. 135(C), pages 31-50.
    6. Ledoit, Olivier & Wolf, Michael, 2021. "Shrinkage estimation of large covariance matrices: Keep it simple, statistician?," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    7. Puccetti, Giovanni & Rüschendorf, Ludger & Vanduffel, Steven, 2020. "On the computation of Wasserstein barycenters," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
    8. Nabil Kahalé, 2019. "Efficient Simulation of High Dimensional Gaussian Vectors," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 58-73, February.
    9. Artur Karimov & Ekaterina Kopets & Tatiana Shpilevaya & Evgenii Katser & Sergey Leonov & Denis Butusov, 2023. "Comparing Neural Style Transfer and Gradient-Based Algorithms in Brushstroke Rendering Tasks," Mathematics, MDPI, vol. 11(10), pages 1-30, May.
    10. Xu, Ganggang & Zhu, Huirong & Lee, J. Jack, 2020. "Borrowing strength and borrowing index for Bayesian hierarchical models," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    11. Abdulkabir Abdulraheem & Im Y. Jung, 2022. "A Comparative Study of Engraved-Digit Data Augmentation by Generative Adversarial Networks," Sustainability, MDPI, vol. 14(19), pages 1-14, September.
    12. Olivier Ledoit & Michael Wolf, 2019. "Shrinkage estimation of large covariance matrices: keep it simple, statistician?," ECON - Working Papers 327, Department of Economics - University of Zurich, revised Jun 2021.
    13. Zhongzhi Lawrence He, 2018. "Generalized Information Ratio," Papers 1803.01381, arXiv.org, revised Apr 2018.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:8:p:1757-1765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.