Advanced Search
MyIDEAS: Login to save this article or follow this journal

A multivariate nonparametric test of independence

Contents:

Author Info

  • Bakirov, Nail K.
  • Rizzo, Maria L.
  • Szekely, Gábor J.
Registered author(s):

    Abstract

    A new nonparametric approach to the problem of testing the joint independence of two or more random vectors in arbitrary dimension is developed based on a measure of association determined by interpoint distances. The population independence coefficient takes values between 0 and 1, and equals zero if and only if the vectors are independent. We show that the corresponding statistic has a finite limit distribution if and only if the two random vectors are independent; thus we have a consistent test for independence. The coefficient is an increasing function of the absolute value of product moment correlation in the bivariate normal case, and coincides with the absolute value of correlation in the Bernoulli case. A simple modification of the statistic is affine invariant. The independence coefficient and the proposed statistic both have a natural extension to testing the independence of several random vectors. Empirical performance of the test is illustrated via a comparative Monte Carlo study.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6WK9-4HRDXYM-1/2/e5b2f348c29d9859c7b4b4dc82565ab7
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 97 (2006)
    Issue (Month): 8 (September)
    Pages: 1742-1756

    as in new window
    Handle: RePEc:eee:jmvana:v:97:y:2006:i:8:p:1742-1756

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=622892&ref=622892_01_ooc_1&version=01

    Related research

    Keywords: Testing independence Independence coefficient Empirical characteristic function;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Sinha, Bimal Kumar & Wieand, H. S., 1977. "Multivariate nonparametric tests for independence," Journal of Multivariate Analysis, Elsevier, vol. 7(4), pages 572-583, December.
    2. Taskinen, Sara & Kankainen, Annaliisa & Oja, Hannu, 2003. "Sign test of independence between two random vectors," Statistics & Probability Letters, Elsevier, vol. 62(1), pages 9-21, March.
    3. Csörgo, Sándor, 1985. "Testing for independence by the empirical characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 16(3), pages 290-299, June.
    4. Deheuvels, Paul, 1981. "An asymptotic decomposition for multivariate distribution-free tests of independence," Journal of Multivariate Analysis, Elsevier, vol. 11(1), pages 102-113, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Matsushita, Raul & Figueiredo, Annibal & Da Silva, Sergio, 2012. "A suggested statistical test for measuring bivariate nonlinear dependence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4891-4898.
    2. Székely, Gábor J. & Rizzo, Maria L., 2013. "The distance correlation t-test of independence in high dimension," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 193-213.
    3. Jean-François Quessy, 2009. "Theoretical efficiency comparisons of independence tests based on multivariate versions of Spearman’s rho," Metrika, Springer, vol. 70(3), pages 315-338, November.
    4. Györfi, László & Walk, Harro, 2012. "Strongly consistent nonparametric tests of conditional independence," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1145-1150.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:8:p:1742-1756. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.