IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v95y2005i1p153-181.html
   My bibliography  Save this article

Depth estimators and tests based on the likelihood principle with application to regression

Author

Listed:
  • Müller, Christine H.

Abstract

We investigate depth notions for general models which are derived via the likelihood principle. We show that the so-called likelihood depth for regression in generalized linear models coincides with the regression depth of Rousseeuw and Hubert (J. Amer. Statist. Assoc. 94 (1999) 388) if the dependent observations are appropriately transformed. For deriving tests, the likelihood depth is extended to simplicial likelihood depth. The simplicial likelihood depth is always a U-statistic which is in some cases not degenerated. Since the U-statistic is degenerated in the most cases, we demonstrate that nevertheless the asymptotic distribution of the simplicial likelihood depth and thus asymptotic [alpha]-level tests for general types of hypotheses can be derived. The tests are distribution-free. We work out the method for linear and quadratic regression.

Suggested Citation

  • Müller, Christine H., 2005. "Depth estimators and tests based on the likelihood principle with application to regression," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 153-181, July.
  • Handle: RePEc:eee:jmvana:v:95:y:2005:i:1:p:153-181
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00131-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Van Aelst, Stefan & Rousseeuw, Peter J., 2000. "Robustness of Deepest Regression," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 82-106, April.
    2. R. W. Farebrother, 1984. "The Distribution of a Linear Combination of Central X2 Random Variables a Remark on as 153: Pan's Procedure for the Tail Probabilities of the Durbin–Watson Statistic," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 33(3), pages 363-366, November.
    3. Dümbgen, Lutz, 1992. "Limit theorems for the simplicial depth," Statistics & Probability Letters, Elsevier, vol. 14(2), pages 119-128, May.
    4. Van Aelst, Stefan & Rousseeuw, Peter J. & Hubert, Mia & Struyf, Anja, 2002. "The Deepest Regression Method," Journal of Multivariate Analysis, Elsevier, vol. 81(1), pages 138-166, April.
    5. Hubert, Mia & Rousseeuw, Peter J., 1998. "The Catline for Deep Regression," Journal of Multivariate Analysis, Elsevier, vol. 66(2), pages 270-296, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Denecke, Liesa & Müller, Christine H., 2011. "Robust estimators and tests for bivariate copulas based on likelihood depth," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2724-2738, September.
    2. Wellmann, Robin & Müller, Christine H., 2010. "Tests for multiple regression based on simplicial depth," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 824-838, April.
    3. Christine Müller, 2011. "Data depth for simple orthogonal regression with application to crack orientation," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(2), pages 135-165, September.
    4. Wellmann, Robin & Müller, Christine H., 2010. "Depth notions for orthogonal regression," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2358-2371, November.
    5. Davy Paindaveine & Germain Van Bever, 2017. "Tyler Shape Depth," Working Papers ECARES ECARES 2017-29, ULB -- Universite Libre de Bruxelles.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Debruyne, M. & Hubert, M. & Portnoy, S. & Vanden Branden, K., 2008. "Censored depth quantiles," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1604-1614, January.
    2. Zuo, Yijun, 2021. "Computation of projection regression depth and its induced median," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    3. Neykov, N.M. & Čížek, P. & Filzmoser, P. & Neytchev, P.N., 2012. "The least trimmed quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1757-1770.
    4. Wellmann, R. & Katina, S. & Muller, Ch.H., 2007. "Calculation of simplicial depth estimators for polynomial regression with applications," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 5025-5040, June.
    5. Yijun Zuo, 2020. "Depth Induced Regression Medians and Uniqueness," Stats, MDPI, vol. 3(2), pages 1-13, April.
    6. Stephan Morgenthaler, 2007. "A survey of robust statistics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 271-293, February.
    7. Broda, S. & Paolella, M.S., 2009. "Evaluating the density of ratios of noncentral quadratic forms in normal variables," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1264-1270, February.
    8. Wellmann, Robin & Harmand, Peter & Müller, Christine H., 2009. "Distribution-free tests for polynomial regression based on simplicial depth," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 622-635, April.
    9. Ursula Gather & Karen Schettlinger & Roland Fried, 2006. "Online signal extraction by robust linear regression," Computational Statistics, Springer, vol. 21(1), pages 33-51, March.
    10. Zuo, Yijun, 2020. "Large sample properties of the regression depth induced median," Statistics & Probability Letters, Elsevier, vol. 166(C).
    11. Yijun Zuo, 2021. "Robustness of the deepest projection regression functional," Statistical Papers, Springer, vol. 62(3), pages 1167-1193, June.
    12. Wellmann, Robin & Müller, Christine H., 2010. "Depth notions for orthogonal regression," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2358-2371, November.
    13. Christmann, Andreas & Steinwart, Ingo & Hubert, Mia, 2006. "Robust Learning from Bites for Data Mining," Technical Reports 2006,03, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    14. Wellmann, Robin & Müller, Christine H., 2010. "Tests for multiple regression based on simplicial depth," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 824-838, April.
    15. Christmann, Andreas & Steinwart, Ingo & Hubert, Mia, 2007. "Robust learning from bites for data mining," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 347-361, September.
    16. Kris Boudt & Derya Caliskan & Christophe Croux, 2011. "Robust explicit estimators of Weibull parameters," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(2), pages 187-209, March.
    17. Van Aelst, Stefan & Rousseeuw, Peter J. & Hubert, Mia & Struyf, Anja, 2002. "The Deepest Regression Method," Journal of Multivariate Analysis, Elsevier, vol. 81(1), pages 138-166, April.
    18. Ryan Cumings-Menon, 2022. "Differentially Private Estimation via Statistical Depth," Papers 2207.12602, arXiv.org.
    19. Stephan Morgenthaler, 2007. "A survey of robust statistics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 271-293, February.
    20. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:95:y:2005:i:1:p:153-181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.