Advanced Search
MyIDEAS: Login

Variational Inequalities for Arbitrary Multivariate Distributions


Author Info

  • Papadatos, N.
  • Papathanasiou, V.
Registered author(s):


    Upper bounds for the total variation distance between two arbitrary multivariate distributions are obtained in terms of the correspondingw-functions. The results extend some previous inequalities satisfied by the normal distribution. Some examples are also given.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 67 (1998)
    Issue (Month): 2 (November)
    Pages: 154-168

    as in new window
    Handle: RePEc:eee:jmvana:v:67:y:1998:i:2:p:154-168

    Contact details of provider:
    Web page:

    Order Information:

    Related research

    Keywords: Total variation distance; multivariate distributions; w-functions;


    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Chou, Jine-Phone, 1988. "An identity for multidimensional continuous exponential families and its applications," Journal of Multivariate Analysis, Elsevier, vol. 24(1), pages 129-142, January.
    2. Papathanasiou, V., 1993. "Some Characteristic Properties of the Fisher Information Matrix via Cacoullos-Type Inequalities," Journal of Multivariate Analysis, Elsevier, vol. 44(2), pages 256-265, February.
    3. Cacoullos, T. & Papathanasiou, V., 1992. "Lower variance bounds and a new proof of the central limit theorem," Journal of Multivariate Analysis, Elsevier, vol. 43(2), pages 173-184, November.
    4. Papathanasiou, V., 1996. "Multivariate Variational Inequalities and the Central Limit Theorem," Journal of Multivariate Analysis, Elsevier, vol. 58(2), pages 189-196, August.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Mikami, Toshio, 2004. "Covariance kernel and the central limit theorem in the total variation distance," Journal of Multivariate Analysis, Elsevier, vol. 90(2), pages 257-268, August.


    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:67:y:1998:i:2:p:154-168. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.