Advanced Search
MyIDEAS: Login to save this article or follow this journal

A Theorem on Uniform Convergence of Stochastic Functions with Applications

Contents:

Author Info

  • Yuan, Ke-Hai
Registered author(s):

    Abstract

    In a variety of statistical problems one needs to manipulate a sequence of stochastic functions involving some unknown parameters. The asymptotic behavior of the estimated parameters often depends on the asymptotic properties of such functions. Especially, the consistency of the estimated parameters follows from the uniform convergence of the sequence of stochastic functions. A theorem on uniform convergence of a sequence of vector valued random functions is presented. The forms of these functions are very general and the assumptions are rather natural. If the sequence of random functions is generated by a sequence of random vectors, these random vectors are only required to be independently distributed and can be of different dimensions. As applications, we consider the consistency of the estimated regression parameters in logistic regression and in M-estimation in a linear model.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6WK9-45M2XB5-10/2/1bae46bd3b74a7ae21b556120b34d83a
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 62 (1997)
    Issue (Month): 1 (July)
    Pages: 100-109

    as in new window
    Handle: RePEc:eee:jmvana:v:62:y:1997:i:1:p:100-109

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=622892&ref=622892_01_ooc_1&version=01

    Related research

    Keywords: uniform convergence strong consistency logistic regression M-estimation;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Cheng, Ching-Shui & Li, Ker-Chau, 1984. "The strong consistency of M-estimators in linear models," Journal of Multivariate Analysis, Elsevier, vol. 15(1), pages 91-98, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Ke-Hai Yuan & Robert Jennrich, 2000. "Estimating Equations with Nuisance Parameters: Theory and Applications," Annals of the Institute of Statistical Mathematics, Springer, vol. 52(2), pages 343-350, June.
    2. Bai, Yang & Fung, Wing K. & Zhu, Zhong Yi, 2009. "Penalized quadratic inference functions for single-index models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 152-161, January.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:62:y:1997:i:1:p:100-109. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.