Advanced Search
MyIDEAS: Login

Approximations and two-sample tests based on P-P and Q-Q plots of the Kaplan-Meier estimators of lifetime distributions


Author Info

  • Deheuvels, Paul
  • Einmahl, John H. J.


Let Fn and Gn denote the Kaplan-Meier product-limit estimators of lifetime distributions based on two independent samples, and let Fninv and Gninv denote their quantile functions. We consider the corresponding P-P plot Fn(Gninv) and Q-Q plot Fninv(Gn), and establish strong approximations of empirical processes based on these P-P and Q-Q plots by appropriate sequences of Gaussian processes. It is shown that the rates of approximation we obtain are the best which can be achieved by this method. We apply these results to obtain the limiting distributions of test statistics which are functionals of Fn(Gninv(s)) - s, Gn(Fninv(s)) - s, and Fn(Gninv(s)) + Gn(Fninv(s)) - 2s, and propose solutions to the problem of testing the assumption that the underlying lifetime distributions F and G are equal, in the case where the censoring distributions are arbitrary and unknown.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Journal of Multivariate Analysis.

Volume (Year): 43 (1992)
Issue (Month): 2 (November)
Pages: 200-217

as in new window
Handle: RePEc:eee:jmvana:v:43:y:1992:i:2:p:200-217

Contact details of provider:
Web page:

Order Information:

Related research

Keywords: two-sample test test of fit product-limit estimators random censorship empirical and quantile processes approximation invariance principles Bahadur representation;

Other versions of this item:


No references listed on IDEAS
You can help add them by filling out this form.


Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Einmahl, J.H.J. & McKeague, I.W., 1999. "Confidence tubes for multiple quantile plots via empirical likelihood," Open Access publications from Tilburg University urn:nbn:nl:ui:12-142078, Tilburg University.


This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


Access and download statistics


When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:43:y:1992:i:2:p:200-217. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.