IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v101y2010i9p2078-2090.html
   My bibliography  Save this article

Semiparametric analysis based on weighted estimating equations for transformation models with missing covariates

Author

Listed:
  • Huang, Bin
  • Wang, Qihua

Abstract

Missing covariate data are very common in regression analysis. In this paper, the weighted estimating equation method (Qi et al., 2005) [25] is used to extend the so-called unified estimation procedure (Chen et al., 2002) [4] for linear transformation models to the case of missing covariates. The non-missingness probability is estimated nonparametrically by the kernel smoothing technique. Under missing at random, the proposed estimators are shown to be consistent and asymptotically normal, with the asymptotic variance estimated consistently by the usual plug-in method. Moreover, the proposed estimators are more efficient than the weighted estimators with the inverse of true non-missingness probability as weight. Finite sample performance of the estimators is examined via simulation and a real dataset is analyzed to illustrate the proposed methods.

Suggested Citation

  • Huang, Bin & Wang, Qihua, 2010. "Semiparametric analysis based on weighted estimating equations for transformation models with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2078-2090, October.
  • Handle: RePEc:eee:jmvana:v:101:y:2010:i:9:p:2078-2090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00048-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenbin Lu, 2004. "On semiparametric transformation cure models," Biometrika, Biometrika Trust, vol. 91(2), pages 331-343, June.
    2. Qi, Lihong & Wang, C.Y. & Prentice, Ross L., 2005. "Weighted Estimators for Proportional Hazards Regression With Missing Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1250-1263, December.
    3. Bierens,Herman J., 2005. "Introduction to the Mathematical and Statistical Foundations of Econometrics," Cambridge Books, Cambridge University Press, number 9780521834315, January.
    4. A. N. Pettitt, 1984. "Proportional Odds Models for Survival Data and Estimates Using Ranks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 33(2), pages 169-175, June.
    5. C. Y. Wang & Hua Yun Chen, 2001. "Augmented Inverse Probability Weighted Estimator for Cox Missing Covariate Regression," Biometrics, The International Biometric Society, vol. 57(2), pages 414-419, June.
    6. Herring A. H & Ibrahim J. G, 2001. "Likelihood-Based Methods for Missing Covariates in the Cox Proportional Hazards Model," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 292-302, March.
    7. Kani Chen, 2002. "Semiparametric analysis of transformation models with censored data," Biometrika, Biometrika Trust, vol. 89(3), pages 659-668, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xuan & Wang, Qihua, 2015. "Semiparametric linear transformation model with differential measurement error and validation sampling," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 67-80.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Mingyue & Li, Huiqiong & Sun, Jianguo, 2021. "Regression analysis of censored data with nonignorable missing covariates and application to Alzheimer Disease," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    2. Na Hu & Xuerong Chen & Jianguo Sun, 2015. "Regression Analysis of Length-biased and Right-censored Failure Time Data with Missing Covariates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 438-452, June.
    3. Torben Martinussen & Klaus K. Holst & Thomas H. Scheike, 2016. "Cox regression with missing covariate data using a modified partial likelihood method," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(4), pages 570-588, October.
    4. Pao-sheng Shen & Yi Liu, 2019. "Pseudo maximum likelihood estimation for the Cox model with doubly truncated data," Statistical Papers, Springer, vol. 60(4), pages 1207-1224, August.
    5. Yanyao Yi & Ting Ye & Menggang Yu & Jun Shao, 2020. "Cox regression with survival‐time‐dependent missing covariate values," Biometrics, The International Biometric Society, vol. 76(2), pages 460-471, June.
    6. Tan, Xin Lu, 2019. "Optimal estimation of slope vector in high-dimensional linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 179-204.
    7. Jon Arni Steingrimsson & Robert L. Strawderman, 2017. "Estimation in the Semiparametric Accelerated Failure Time Model With Missing Covariates: Improving Efficiency Through Augmentation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1221-1235, July.
    8. Shanshan Li & Yang Ning, 2015. "Estimation of covariate‐specific time‐dependent ROC curves in the presence of missing biomarkers," Biometrics, The International Biometric Society, vol. 71(3), pages 666-676, September.
    9. Menggang Yu & Bin Nan, 2010. "Regression Calibration in Semiparametric Accelerated Failure Time Models," Biometrics, The International Biometric Society, vol. 66(2), pages 405-414, June.
    10. Wang, Qihua & Tong, Xingwei & Sun, Liuquan, 2012. "Exploring the varying covariate effects in proportional odds models with censored data," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 168-189.
    11. Lu Mao & Dan-Yu Lin & Donglin Zeng, 2017. "Semiparametric regression analysis of interval-censored competing risks data," Biometrics, The International Biometric Society, vol. 73(3), pages 857-865, September.
    12. Jianbo Li & Minggao Gu & Tao Hu, 2012. "General partially linear varying-coefficient transformation models for ranking data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(7), pages 1475-1488, January.
    13. Chi-Chung Wen & Chien-Tai Lin, 2011. "Analysis of Current Status Data with Missing Covariates," Biometrics, The International Biometric Society, vol. 67(3), pages 760-769, September.
    14. Ying Qing Chen & Nan Hu & Su-Chun Cheng & Philippa Musoke & Lue Ping Zhao, 2012. "Estimating Regression Parameters in an Extended Proportional Odds Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 318-330, March.
    15. Lu Mao & D. Y. Lin, 2017. "Efficient estimation of semiparametric transformation models for the cumulative incidence of competing risks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 573-587, March.
    16. Yilong Zhang & Xiaoxia Han & Yongzhao Shao, 2021. "The ROC of Cox proportional hazards cure models with application in cancer studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(2), pages 195-215, April.
    17. Ruiwen Zhou & Huiqiong Li & Jianguo Sun & Niansheng Tang, 2022. "A new approach to estimation of the proportional hazards model based on interval-censored data with missing covariates," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(3), pages 335-355, July.
    18. Lihong Qi & Xu Zhang & Yanqing Sun & Lu Wang & Yichuan Zhao, 2019. "Weighted estimating equations for additive hazards models with missing covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 365-387, April.
    19. Donglin Zeng & Qingxia Chen, 2010. "Adjustment for Missingness Using Auxiliary Information in Semiparametric Regression," Biometrics, The International Biometric Society, vol. 66(1), pages 115-122, March.
    20. Lu, Wenbin & Liang, Yu, 2006. "Empirical likelihood inference for linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1586-1599, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:101:y:2010:i:9:p:2078-2090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.