Advanced Search
MyIDEAS: Login

On sparse estimation for semiparametric linear transformation models

Contents:

Author Info

  • Zhang, Hao Helen
  • Lu, Wenbin
  • Wang, Hansheng

Abstract

Semiparametric linear transformation models have received much attention due to their high flexibility in modeling survival data. A useful estimating equation procedure was recently proposed by Chen et al. (2002) [21] for linear transformation models to jointly estimate parametric and nonparametric terms. They showed that this procedure can yield a consistent and robust estimator. However, the problem of variable selection for linear transformation models has been less studied, partially because a convenient loss function is not readily available under this context. In this paper, we propose a simple yet powerful approach to achieve both sparse and consistent estimation for linear transformation models. The main idea is to derive a profiled score from the estimating equation of Chen et al. [21], construct a loss function based on the profile scored and its variance, and then minimize the loss subject to some shrinkage penalty. Under regularity conditions, we have shown that the resulting estimator is consistent for both model estimation and variable selection. Furthermore, the estimated parametric terms are asymptotically normal and can achieve a higher efficiency than that yielded from the estimation equations. For computation, we suggest a one-step approximation algorithm which can take advantage of the LARS and build the entire solution path efficiently. Performance of the new procedure is illustrated through numerous simulations and real examples including one microarray data.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6WK9-4YFK2SV-1/2/940155782f50ee0f58991841c153e60d
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Journal of Multivariate Analysis.

Volume (Year): 101 (2010)
Issue (Month): 7 (August)
Pages: 1594-1606

as in new window
Handle: RePEc:eee:jmvana:v:101:y:2010:i:7:p:1594-1606

Contact details of provider:
Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

Order Information:
Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
Web: https://shop.elsevier.com/order?id=622892&ref=622892_01_ooc_1&version=01

Related research

Keywords: Censored survival data Linear transformation models LARS Shrinkage Variable selection;

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Hui Zou, 2008. "A note on path-based variable selection in the penalized proportional hazards model," Biometrika, Biometrika Trust, vol. 95(1), pages 241-247.
  2. Kani Chen, 2002. "Semiparametric analysis of transformation models with censored data," Biometrika, Biometrika Trust, vol. 89(3), pages 659-668, August.
  3. Johnson, Brent A. & Lin, D.Y. & Zeng, Donglin, 2008. "Penalized Estimating Functions and Variable Selection in Semiparametric Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 672-680, June.
  4. repec:cup:cbooks:9780521496032 is not listed on IDEAS
  5. Zeng, Donglin & Lin, D.Y., 2007. "Semiparametric Transformation Models With Random Effects for Recurrent Events," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 167-180, March.
  6. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Zhangong Zhou & Rong Jiang & Weimin Qian, 2013. "LAD variable selection for linear models with randomly censored data," Metrika, Springer, vol. 76(2), pages 287-300, February.
  2. Hu, Jianwei & Chai, Hao, 2013. "Adjusted regularized estimation in the accelerated failure time model with high dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 96-114.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:101:y:2010:i:7:p:1594-1606. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.