Advanced Search
MyIDEAS: Login to save this article or follow this journal

Using bimodal kernel for inference in nonparametric regression with correlated errors

Contents:

Author Info

  • Kim, Tae Yoon
  • Park, Byeong U.
  • Moon, Myung Sang
  • Kim, Chiho
Registered author(s):

    Abstract

    For nonparametric regression model with fixed design, it is well known that obtaining a correct bandwidth is difficult when errors are correlated. Various methods of bandwidth selection have been proposed, but their successful implementation critically depends on a tuning procedure which requires accurate information about error correlation. Unfortunately, such information is usually hard to obtain since errors are not observable. In this article a new bandwidth selector based on the use of a bimodal kernel is proposed and investigated. It is shown that the new bandwidth selector is quite useful for the tuning procedures of various other methods. Furthermore, the proposed bandwidth selector itself proves to be quite effective when the errors are severely correlated.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6WK9-4V8GB21-2/2/57d113a4c321767ccbe2eab243d5702b
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 100 (2009)
    Issue (Month): 7 (August)
    Pages: 1487-1497

    as in new window
    Handle: RePEc:eee:jmvana:v:100:y:2009:i:7:p:1487-1497

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=622892&ref=622892_01_ooc_1&version=01

    Related research

    Keywords: Bimodal kernels Correlated errors Tuning procedure Bandwidth selector;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Chiu, Shean-Tsong, 1989. "Bandwidth selection for kernel estimate with correlated noise," Statistics & Probability Letters, Elsevier, vol. 8(4), pages 347-354, September.
    2. Tae Yoon Kim, 2004. "Nonparametric detection of correlated errors," Biometrika, Biometrika Trust, vol. 91(2), pages 491-496, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Michael Scholz & Stefan Sperlich & Jens Perch Nielsen, 2012. "Nonparametric prediction of stock returns with generated bond yields," Graz Economics Papers 2012-10, University of Graz, Department of Economics.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:100:y:2009:i:7:p:1487-1497. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.