IDEAS home Printed from https://ideas.repec.org/a/eee/jeeman/v68y2014i3p507-526.html
   My bibliography  Save this article

The environmental effects of crop price increases: Nitrogen losses in the U.S. Corn Belt

Author

Listed:
  • Hendricks, Nathan P.
  • Sinnathamby, Sumathy
  • Douglas-Mankin, Kyle
  • Smith, Aaron
  • Sumner, Daniel A.
  • Earnhart, Dietrich H.

Abstract

High corn prices cause farmers to plant more corn on fields that were planted to corn in the previous year, rather than alternating between corn and soybeans. Cultivating corn after corn requires greater nitrogen fertilizer and some of this nitrogen flows into waterways and causes environmental damage. We estimate the effect of crop prices on nitrogen losses for most fields in Iowa, Illinois, and Indiana using crop data from satellite imagery. Spatial variation in these high-resolution estimates highlights the fact that the environmental effects of agriculture depend not only on what is grown, but also on where and in what sequence it is grown. Our results suggest that the change in corn and soybean prices due to a billion gallons of ethanol production expands the size of the hypoxic zone in the Gulf of Mexico by roughly 30 square miles on average, although there is considerable uncertainty in this estimate.

Suggested Citation

  • Hendricks, Nathan P. & Sinnathamby, Sumathy & Douglas-Mankin, Kyle & Smith, Aaron & Sumner, Daniel A. & Earnhart, Dietrich H., 2014. "The environmental effects of crop price increases: Nitrogen losses in the U.S. Corn Belt," Journal of Environmental Economics and Management, Elsevier, vol. 68(3), pages 507-526.
  • Handle: RePEc:eee:jeeman:v:68:y:2014:i:3:p:507-526
    DOI: 10.1016/j.jeem.2014.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0095069614000710
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeem.2014.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ben H. Blomendahl & Richard K. Perrin & Bruce B. Johnson, 2011. "The Impact of Ethanol Plants on Surrounding Farmland Values: A Case Study," Land Economics, University of Wisconsin Press, vol. 87(2), pages 223-232.
    2. Hendricks, Nathan P. & Janzen, Joseph P. & Smith, Aaron, 2013. "Futures Prices in Supply Analysis Reconsidered," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150696, Agricultural and Applied Economics Association.
    3. Kanlaya J. Barr & Bruce A. Babcock & Miguel A. Carriquiry & Andre M. Nassar & Leila Harfuch, 2011. "Agricultural Land Elasticities in the United States and Brazil," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 33(3), pages 449-462.
    4. John M. Antle & Susan M. Capalbo, 2001. "Econometric-Process Models for Integrated Assessment of Agricultural Production Systems," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(2), pages 389-401.
    5. Carlo Fezzi & Ian J. Bateman, 2011. "Structural Agricultural Land Use Modeling for Spatial Agro-Environmental Policy Analysis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(4), pages 1168-1188.
    6. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    7. Ruben N. Lubowski & Andrew J. Plantinga & Robert N. Stavins, 2008. "What Drives Land-Use Change in the United States? A National Analysis of Landowner Decisions," Land Economics, University of Wisconsin Press, vol. 84(4), pages 529-550.
    8. Pesaran, M. Hashem & Smith, Ron, 1995. "Estimating long-run relationships from dynamic heterogeneous panels," Journal of Econometrics, Elsevier, vol. 68(1), pages 79-113, July.
    9. Muller, Nicholas Z. & Mendelsohn, Robert, 2007. "Measuring the damages of air pollution in the United States," Journal of Environmental Economics and Management, Elsevier, vol. 54(1), pages 1-14, July.
    10. Christian Langpap & Ivan Hascic & JunJie Wu, 2008. "Protecting Watershed Ecosystems through Targeted Local Land Use Policies," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(3), pages 684-700.
    11. Kevin McNew & Duane Griffith, 2005. "Measuring the Impact of Ethanol Plants on Local Grain Prices," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 27(2), pages 164-180.
    12. David A. Newburn & Peter Berck, 2006. "Modeling Suburban and Rural-Residential Development Beyond the Urban Fringe," Land Economics, University of Wisconsin Press, vol. 82(4), pages 481-499.
    13. Antle, John & Capalbo, Susan & Mooney, Sian & Elliott, Edward & Paustian, Keith, 2003. "Spatial heterogeneity, contract design, and the efficiency of carbon sequestration policies for agriculture," Journal of Environmental Economics and Management, Elsevier, vol. 46(2), pages 231-250, September.
    14. Robertson, D & Symons, J, 1992. "Some Strange Properties of Panel Data Estimators," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(2), pages 175-189, April-Jun.
    15. David A. Hennessy, 2006. "On Monoculture and the Structure of Crop Rotations," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(4), pages 900-914.
    16. Andrew J. Plantinga, 1996. "The Effect of Agricultural Policies on Land Use and Environmental Quality," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(4), pages 1082-1091.
    17. Nathan P. Hendricks & Aaron Smith & Daniel A. Sumner, 2014. "Crop Supply Dynamics and the Illusion of Partial Adjustment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(5), pages 1469-1491.
    18. Charles Towe & Constant I. Tra, 2013. "Vegetable Spirits and Energy Policy," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(1), pages 1-16.
    19. Kevin McNew & Duane Griffith, 2005. "Measuring the Impact of Ethanol Plants on Local Grain Prices," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 27(2), pages 164-180.
    20. Andrew B. Bernard & J. Bradford Jensen, 2004. "Why Some Firms Export," The Review of Economics and Statistics, MIT Press, vol. 86(2), pages 561-569, May.
    21. Anne Lacroix & Alban Thomas, 2011. "Estimating the Environmental Impact of Land and Production Decisions with Multivariate Selection Rules and Panel Data," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(3), pages 780-798.
    22. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    23. John A. Miranowski, 1984. "Impacts of Productivity Loss on Crop Production and Management in a Dynamic Economic Model," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 66(1), pages 61-71.
    24. Miranowski, John, 1984. "Impacts of Productivity Loss on Crop Production and Management in a Dynamic Economic Model," Staff General Research Papers Archive 10708, Iowa State University, Department of Economics.
    25. David A. Newburn & Peter Berck, 2006. "Modeling Suburban and Rural-Residential Development Beyond the Urban Fringe," Land Economics, University of Wisconsin Press, vol. 82(4), pages 481-499.
    26. Christian Langpap & JunJie Wu, 2011. "Potential Environmental Impacts of Increased Reliance on Corn-Based Bioenergy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 49(2), pages 147-171, June.
    27. Barr, Kanlaya Jintanakul, 2011. "Agricultural Land Elasticities in the United States and Brazil," Staff General Research Papers Archive 34893, Iowa State University, Department of Economics.
    28. Gowda, Prasanna H. & Mulla, David J. & Jaynes, Dan B., 2008. "Simulated long-term nitrogen losses for a midwestern agricultural watershed in the United States," Agricultural Water Management, Elsevier, vol. 95(5), pages 616-624, May.
    29. Erik Lichtenberg, 1989. "Land Quality, Irrigation Development, and Cropping Patterns in the Northern High Plains," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(1), pages 187-194.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicholas J. Pates & Nathan P. Hendricks, 2021. "Fields from Afar: Evidence of Heterogeneity in United States Corn Rotational Response from Remote Sensing Data," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(5), pages 1759-1782, October.
    2. Jennifer Ifft & Deepak Rajagopal & Ryan Weldzuis, 2019. "Ethanol Plant Location and Land Use: A Case Study of CRP and the Ethanol Mandate," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(1), pages 37-55, March.
    3. Ifft, Jennifer & Rajagopal, Deepak & Ryan, Weldzius, 2016. "The effect of the ethanol mandate on the Conservation Reserve Program," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236178, Agricultural and Applied Economics Association.
    4. CARPENTIER, Alain & GOHIN, Alexandre & SCKOKAI, Paolo & THOMAS, Alban, 2015. "Economic modelling of agricultural production: past advances and new challenges," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 96(1), March.
    5. Hyunseok Kim & GianCarlo Moschini, 2018. "The Dynamics of Supply: U.S. Corn and Soybeans in the Biofuel Era," Land Economics, University of Wisconsin Press, vol. 94(4), pages 593-613.
    6. Lungarska, Anna & Chakir, Raja, 2018. "Climate-induced Land Use Change in France: Impacts of Agricultural Adaptation and Climate Change Mitigation," Ecological Economics, Elsevier, vol. 147(C), pages 134-154.
    7. Stigler, Matthieu M., 2018. "Supply response at the field-level: disentangling area and yield effects," 2018 Annual Meeting, August 5-7, Washington, D.C. 274343, Agricultural and Applied Economics Association.
    8. McFadden, Jonathan & Miranowski, John, "undated". "Climate Change Impacts on the Intensive and Extensive Margins of US Agricultural Land," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170512, Agricultural and Applied Economics Association.
    9. Claassen, Roger & Carriazo, Fernando & Cooper, Joseph C. & Hellerstein, Daniel & Ueda, Kohei, 2011. "Grassland to Cropland Conversion in the Northern Plains: The Role of Crop Insurance, Commodity, and Disaster Programs," Economic Research Report 262239, United States Department of Agriculture, Economic Research Service.
    10. Austin, K.G. & Jones, J.P.H. & Clark, C.M., 2022. "A review of domestic land use change attributable to U.S. biofuel policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    11. Carlo Fezzi & Ian Bateman & Tom Askew & Paul Munday & Unai Pascual & Antara Sen & Amii Harwood, 2014. "Valuing Provisioning Ecosystem Services in Agriculture: The Impact of Climate Change on Food Production in the United Kingdom," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 57(2), pages 197-214, February.
    12. Jean-Sauveur Ay & Raja Chakir & Julie Le Gallo, 2014. "The effects of scale, space and time on the predictive accuracy of land use models," Working Papers 2014/02, INRA, Economie Publique.
    13. Sandler, Austin M. & Rashford, Benjamin S., 2018. "Misclassification error in satellite imagery data: Implications for empirical land-use models," Land Use Policy, Elsevier, vol. 75(C), pages 530-537.
    14. Hendricks, Nathan P. & Smith, Aaron D., 2012. "Comparing the Bias of Dynamic Panel Estimators in Multilevel Panels: Individual versus Grouped Data," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124548, Agricultural and Applied Economics Association.
    15. Junpyo Park, 2022. "Distance to Biorefinery Plants and Its Influence on Agricultural Land Value: Evidence from the United States Midwest Region," Land, MDPI, vol. 11(9), pages 1-14, September.
    16. Hendricks, Nathan P. & Er, Emrah, 2018. "Changes in cropland area in the United States and the role of CRP," Food Policy, Elsevier, vol. 75(C), pages 15-23.
    17. Sung, Jae-hoon & Miranowski, John A., 2016. "Information technologies and field-level chemical use for corn production," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235858, Agricultural and Applied Economics Association.
    18. Yanbing Wang & Michael S. Delgado & Juan Sesmero & Benjamin M. Gramig, 2020. "Market Structure and the Local Effects of Ethanol Expansion on Land Allocation: A Spatially Explicit Analysis," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(5), pages 1598-1622, October.
    19. Chakir, Raja & Lungarska, Anna, 2015. "Agricultural land rents in land use models: a spatial econometric analysis," 150th Seminar, October 22-23, 2015, Edinburgh, Scotland 212641, European Association of Agricultural Economists.
    20. Catherine L. Kling & Raymond W. Arritt & Gray Calhoun & David A. Keiser, 2016. "Research Needs and Challenges in the FEW System: Coupling Economic Models with Agronomic, Hydrologic, and Bioenergy Models for Sustainable Food, Energy, and Water Systems," Center for Agricultural and Rural Development (CARD) Publications 16-wp563, Center for Agricultural and Rural Development (CARD) at Iowa State University.

    More about this item

    Keywords

    Crop rotation; Spatial; Water quality; Dynamic panel;
    All these keywords.

    JEL classification:

    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jeeman:v:68:y:2014:i:3:p:507-526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622870 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.