IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v33y2017i1p61-75.html
   My bibliography  Save this article

A mixed frequency approach to the forecasting of private consumption with ATM/POS data

Author

Listed:
  • Duarte, Cláudia
  • Rodrigues, Paulo M.M.
  • Rua, António

Abstract

The recent worldwide development and widespread use of electronic payment systems has provided an opportunity to explore new sources of data for the monitoring of macroeconomic activity. In this paper, we analyse the usefulness of data collected from automated teller machines (ATM) and points-of-sale (POS) for nowcasting and forecasting quarterly private consumption. We take advantage of the availability of such high frequency data by using mixed data sampling (MIDAS) regressions. A comparison of several MIDAS variants proposed in the literature is conducted, and both single- and multi-variable models are considered, together with different information sets within the quarter. Given the substantial use of ATM/POS technology in Portugal, it is important to assess the information content of this data for tracking private consumption. We find that ATM/POS data display a better forecast performance than typical indicators, which reinforces the potential usefulness of this novel type of data among policymakers and practitioners.

Suggested Citation

  • Duarte, Cláudia & Rodrigues, Paulo M.M. & Rua, António, 2017. "A mixed frequency approach to the forecasting of private consumption with ATM/POS data," International Journal of Forecasting, Elsevier, vol. 33(1), pages 61-75.
  • Handle: RePEc:eee:intfor:v:33:y:2017:i:1:p:61-75
    DOI: 10.1016/j.ijforecast.2016.08.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207016300899
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2016.08.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Evan F. Koenig & Sheila Dolmas & Jeremy Piger, 2003. "The Use and Abuse of Real-Time Data in Economic Forecasting," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 618-628, August.
    2. Rodriguez, Abel & Puggioni, Gavino, 2010. "Mixed frequency models: Bayesian approaches to estimation and prediction," International Journal of Forecasting, Elsevier, vol. 26(2), pages 293-311, April.
    3. Christian Dreger & Konstantin Arkadievich Kholodilin, 2013. "Forecasting Private Consumption by Consumer Surveys," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(1), pages 10-18, January.
    4. Paulo Rodrigues & Paulo Esteves, 2010. "Calendar effects in daily ATM withdrawals," Economics Bulletin, AccessEcon, vol. 30(4), pages 2587-2597.
    5. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
    6. Arnold Zellner, 1978. "Seasonal Analysis of Economic Time Series," NBER Books, National Bureau of Economic Research, Inc, number zell78-1, March.
    7. Massimiliano Marcellino & Christian Schumacher, 2010. "Factor MIDAS for Nowcasting and Forecasting with Ragged‐Edge Data: A Model Comparison for German GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 518-550, August.
    8. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2005. "There is a risk-return trade-off after all," Journal of Financial Economics, Elsevier, vol. 76(3), pages 509-548, June.
    9. Virmantas Kvedaras & Alfredas Račkauskas, 2010. "Regression Models with Variables of Different Frequencies: The Case of a Fixed Frequency Ratio," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(5), pages 600-620, October.
    10. Todd Clark & Michael McCracken, 2005. "Evaluating Direct Multistep Forecasts," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 369-404.
    11. Michael P. Clements & Ana Beatriz Galvao, 2009. "Forecasting US output growth using leading indicators: an appraisal using MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206.
    12. António Rua & Fátima Cardoso, 2011. "The Quarterly National Accounts in real-time: an analysis of the revisions over the last decade," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
    13. David Humphrey & Lawrence Pulley & Jukka Vesala, 2000. "The Check's in the Mail: Why the United States Lags in the Adoption of Cost-Saving Electronic Payments," Journal of Financial Services Research, Springer;Western Finance Association, vol. 17(1), pages 17-39, February.
    14. Libero Monteforte & Gianluca Moretti, 2013. "Real‐Time Forecasts of Inflation: The Role of Financial Variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(1), pages 51-61, January.
    15. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
    16. Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
    17. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
    18. Geoffrey R. Gerdes & May X. Liu & Darrel W. Parke & Jack K. Walton, 2005. "Trends in the use of payment instruments in the United States," Federal Reserve Bulletin, Board of Governors of the Federal Reserve System (U.S.), vol. 91(Spr), pages 180-201.
    19. Edward E. Leamer, 2011. "Workday, Holiday and Calendar Adjustment with 21st Century Data: Monthly Aggregates from Daily Diesel Fuel Purchases," NBER Working Papers 16897, National Bureau of Economic Research, Inc.
    20. Bergmeir, Christoph & Hyndman, Rob J. & Benítez, José M., 2016. "Bagging exponential smoothing methods using STL decomposition and Box–Cox transformation," International Journal of Forecasting, Elsevier, vol. 32(2), pages 303-312.
    21. Humphrey, David & Willesson, Magnus & Bergendahl, Goran & Lindblom, Ted, 2006. "Benefits from a changing payment technology in European banking," Journal of Banking & Finance, Elsevier, vol. 30(6), pages 1631-1652, June.
    22. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    23. Clements, Michael P & Galvão, Ana Beatriz, 2008. "Macroeconomic Forecasting With Mixed-Frequency Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 546-554.
    24. Hendry, David F & Mizon, Grayham E, 1978. "Serial Correlation as a Convenient Simplification, not a Nuisance: A Comment on a Study of the Demand for Money by the Bank of England," Economic Journal, Royal Economic Society, vol. 88(351), pages 549-563, September.
    25. Paulo Esteves, 2009. "Are ATM/POS Data Relevant When Nowcasting Private Consumption?," Working Papers w200925, Banco de Portugal, Economics and Research Department.
    26. Ghysels, Eric & Wright, Jonathan H., 2009. "Forecasting Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 504-516.
    27. Dias, Francisco & Pinheiro, Maximiano & Rua, António, 2015. "Forecasting Portuguese GDP with factor models: Pre- and post-crisis evidence," Economic Modelling, Elsevier, vol. 44(C), pages 266-272.
    28. Michelle T. Armesto & Kristie M. Engemann & Michael T. Owyang, 2010. "Forecasting with mixed frequencies," Review, Federal Reserve Bank of St. Louis, vol. 92(Nov), pages 521-536.
    29. Schumacher, Christian & Breitung, Jörg, 2008. "Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data," International Journal of Forecasting, Elsevier, vol. 24(3), pages 386-398.
    30. Foroni, Claudia & Marcellino, Massimiliano, 2014. "A comparison of mixed frequency approaches for nowcasting Euro area macroeconomic aggregates," International Journal of Forecasting, Elsevier, vol. 30(3), pages 554-568.
    31. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
    32. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    33. Cláudia Duarte, 2014. "Autoregressive augmentation of MIDAS regressions," Working Papers w201401, Banco de Portugal, Economics and Research Department.
    34. John Galbraith & Greg Tkacz, 2007. "Electronic Transactions as High-Frequency Indicators of Economic Activity," Staff Working Papers 07-58, Bank of Canada.
    35. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    36. Kenneth F. Wallis, 1978. "Seasonal Adjustment and Multiple Time Series Analysis," NBER Chapters, in: Seasonal Analysis of Economic Time Series, pages 347-364, National Bureau of Economic Research, Inc.
    37. John W. Galbraith & Greg Tkacz, 2013. "Nowcasting GDP: Electronic Payments, Data Vintages and the Timing of Data Releases," CIRANO Working Papers 2013s-25, CIRANO.
    38. John W. Galbraith & Greg Tkacz, 2013. "Analyzing Economic Effects of September 11 and Other Extreme Events Using Debit and Payments System Data," Canadian Public Policy, University of Toronto Press, vol. 39(1), pages 119-134, March.
    39. Jennie Bai & Eric Ghysels & Jonathan H. Wright, 2013. "State Space Models and MIDAS Regressions," Econometric Reviews, Taylor & Francis Journals, vol. 32(7), pages 779-813, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cláudia Duarte, 2016. "A Mixed Frequency Approach to Forecast Private Consumption with ATM/POS Data," Working Papers w201601, Banco de Portugal, Economics and Research Department.
    2. Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
    3. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
    4. Valadkhani, Abbas & Smyth, Russell, 2017. "How do daily changes in oil prices affect US monthly industrial output?," Energy Economics, Elsevier, vol. 67(C), pages 83-90.
    5. Bahar Şen Doğan & Murat Midiliç, 2019. "Forecasting Turkish real GDP growth in a data-rich environment," Empirical Economics, Springer, vol. 56(1), pages 367-395, January.
    6. Santiago Etchegaray Alvarez, 2022. "Proyecciones macroeconómicas con datos en frecuencias mixtas. Modelos ADL-MIDAS, U-MIDAS y TF-MIDAS con aplicaciones para Uruguay," Documentos de trabajo 2022004, Banco Central del Uruguay.
    7. Stavros Degiannakis, 2023. "The D-model for GDP nowcasting," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-33, December.
    8. Barsoum, Fady & Stankiewicz, Sandra, 2015. "Forecasting GDP growth using mixed-frequency models with switching regimes," International Journal of Forecasting, Elsevier, vol. 31(1), pages 33-50.
    9. Foroni, Claudia & Marcellino, Massimiliano & Schumacher, Christian, 2011. "U-MIDAS: MIDAS regressions with unrestricted lag polynomials," Discussion Paper Series 1: Economic Studies 2011,35, Deutsche Bundesbank.
    10. Gani Ramadani & Magdalena Petrovska & Vesna Bucevska, 2021. "Evaluation of mixed frequency approaches for tracking near-term economic developments in North Macedonia," Working Papers 2021-03, National Bank of the Republic of North Macedonia.
    11. J. Isaac Miller, 2014. "Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures," Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 584-614.
    12. Deschamps, Bruno & Ioannidis, Christos & Ka, Kook, 2020. "High-frequency credit spread information and macroeconomic forecast revision," International Journal of Forecasting, Elsevier, vol. 36(2), pages 358-372.
    13. Zhang, Yue-Jun & Wang, Jin-Li, 2019. "Do high-frequency stock market data help forecast crude oil prices? Evidence from the MIDAS models," Energy Economics, Elsevier, vol. 78(C), pages 192-201.
    14. Cláudia Duarte, 2014. "Autoregressive augmentation of MIDAS regressions," Working Papers w201401, Banco de Portugal, Economics and Research Department.
    15. Baumeister, Christiane & Guérin, Pierre, 2021. "A comparison of monthly global indicators for forecasting growth," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1276-1295.
    16. Miller, J. Isaac, 2018. "Simple robust tests for the specification of high-frequency predictors of a low-frequency series," Econometrics and Statistics, Elsevier, vol. 5(C), pages 45-66.
    17. Mahmut Gunay, 2020. "Nowcasting Turkish GDP with MIDAS: Role of Functional Form of the Lag Polynomial," Working Papers 2002, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    18. Schumacher Christian, 2011. "Forecasting with Factor Models Estimated on Large Datasets: A Review of the Recent Literature and Evidence for German GDP," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 28-49, February.
    19. Huiwen Lai & Eric C. Y. Ng, 2020. "On business cycle forecasting," Frontiers of Business Research in China, Springer, vol. 14(1), pages 1-26, December.
    20. Cláudia Duarte & Sónia Cabral, 2016. "Nowcasting Portuguese tourism exports," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:33:y:2017:i:1:p:61-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.