Advanced Search
MyIDEAS: Login to save this article or follow this journal

Space–time autoregressive models and forecasting national, regional and state crime rates

Contents:

Author Info

  • Shoesmith, Gary L.

Abstract

The recently advanced space–time autoregressive (ST-AR) model is used to forecast US, regional and state rates of violent and property crime. The disaggregate state (Florida) violent crime model includes murder, rape, robbery, and assault, while the property crime model includes burglary, larceny, and motor vehicle theft. In experimental forecasts, ST-AR RMSEs are compared to those for aggregate univariate AR(p) models, vector autoregressions (VAR), Bayesian VARs (BVAR), and two naïve models that predict future crime rates either as the most recent rate or according to the most recent change in rates. The ST-AR model is of particular interest, given its efficient use of data, much like panel-data estimation. The ST-AR, BVAR, and AR(p) models outperform the other three approaches, but the ST-AR models are generally superior.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/pii/S0169207012001136
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal International Journal of Forecasting.

Volume (Year): 29 (2013)
Issue (Month): 1 ()
Pages: 191-201

as in new window
Handle: RePEc:eee:intfor:v:29:y:2013:i:1:p:191-201

Contact details of provider:
Web page: http://www.elsevier.com/locate/ijforecast

Related research

Keywords: Crime forecasting; Autoregressive models; Disaggregation; Regional forecasting; Time series;

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Hernandez-Murillo, Ruben & Owyang, Michael T., 2006. "The information content of regional employment data for forecasting aggregate conditions," Economics Letters, Elsevier, vol. 90(3), pages 335-339, March.
  2. Bunn, Derek W. & Vassilopoulos, A. I., 1993. "Using group seasonal indices in multi-item short-term forecasting," International Journal of Forecasting, Elsevier, vol. 9(4), pages 517-526, December.
  3. Michael T. Owyang & Jeremy M. Piger & Howard J. Wall, 2004. "Business cycle phases in U.S. states," Working Papers 2003-011, Federal Reserve Bank of St. Louis.
  4. Giacomini, Raffaella & Granger, Clive W.J., 2001. "Aggregationn of Space-Time Processes," University of California at San Diego, Economics Working Paper Series qt77f76455, Department of Economics, UC San Diego.
  5. Hendry, David F. & Hubrich, Kirstin, 2010. "Combining disaggregate forecasts or combining disaggregate information to forecast an aggregate," Working Paper Series 1155, European Central Bank.
  6. George Duncan & Wilpen Gorr & Janusz Szczypula, 1993. "Bayesian Forecasting for Seemingly Unrelated Time Series: Application to Local Government Revenue Forecasting," Management Science, INFORMS, vol. 39(3), pages 275-293, March.
  7. Levitt, Steven D, 1998. "Why Do Increased Arrest Rates Appear to Reduce Crime: Deterrence, Incapacitation, or Measurement Error?," Economic Inquiry, Western Economic Association International, vol. 36(3), pages 353-72, July.
  8. Steven D. Levitt, 1995. "Using Electoral Cycles in Police Hiring to Estimate the Effect of Policeon Crime," NBER Working Papers 4991, National Bureau of Economic Research, Inc.
  9. Robert B. Litterman, 1985. "Forecasting with Bayesian vector autoregressions five years of experience," Working Papers 274, Federal Reserve Bank of Minneapolis.
  10. Harries, Richard, 2003. "Modelling and predicting recorded property crime trends in England and Wales--a retrospective," International Journal of Forecasting, Elsevier, vol. 19(4), pages 557-566.
  11. Steven D. Levitt, 1995. "The Effect of Prison Population Size on Crime Rates: Evidence From Prison Overcrowding Litigation," NBER Working Papers 5119, National Bureau of Economic Research, Inc.
  12. Gorr, Wilpen & Olligschlaeger, Andreas & Thompson, Yvonne, 2003. "Short-term forecasting of crime," International Journal of Forecasting, Elsevier, vol. 19(4), pages 579-594.
  13. Deadman, Derek, 2003. "Forecasting residential burglary," International Journal of Forecasting, Elsevier, vol. 19(4), pages 567-578.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:29:y:2013:i:1:p:191-201. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.