Advanced Search
MyIDEAS: Login

Forecasting television ratings

Contents:

Author Info

  • Danaher, Peter J.
  • Dagger, Tracey S.
  • Smith, Michael S.

Abstract

Despite the state of flux in media today, television remains the dominant player globally for advertising spending. Since television advertising time is purchased on the basis of projected future ratings, and ad costs have skyrocketed, there is increasingly pressure to forecast television ratings accurately. The forecasting methods that have been used in the past are not generally very reliable, and many have not been validated; also, even more distressingly, none have been tested in today's multichannel environment. In this study we compare eight different forecasting models, ranging from a naïve empirical method to a state-of-the-art Bayesian model-averaging method. Our data come from a recent time period, namely 2004-2008, in a market with over 70 channels, making the data more typical of today's viewing environment. The simple models that are commonly used in industry do not forecast as well as any econometric models. Furthermore, time series methods are not applicable, as many programs are broadcast only once. However, we find that a relatively straightforward random effects regression model often performs as well as more sophisticated Bayesian models in out-of-sample forecasting. Finally, we demonstrate that making improvements in ratings forecasts could save the television industry between $250 and $586 million per year.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/pii/S0169207011000033
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal International Journal of Forecasting.

Volume (Year): 27 (2011)
Issue (Month): 4 (October)
Pages: 1215-1240

as in new window
Handle: RePEc:eee:intfor:v:27:y:2011:i:4:p:1215-1240

Contact details of provider:
Web page: http://www.elsevier.com/locate/ijforecast

Related research

Keywords: Television audience Regression Random effects Bayesian model averaging;

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Smith, M. & Mathur, S. & Kohn, R., . "Bayesian Semiparametric Regression: An Exposition and Application to Print Advertising Data," Statistics Working Paper _010, Australian Graduate School of Management.
  2. Fernandez, Carmen & Ley, Eduardo & Steel, Mark F. J., 2001. "Benchmark priors for Bayesian model averaging," Journal of Econometrics, Elsevier, vol. 100(2), pages 381-427, February.
  3. Nikolopoulos, K. & Goodwin, P. & Patelis, A. & Assimakopoulos, V., 2007. "Forecasting with cue information: A comparison of multiple regression with alternative forecasting approaches," European Journal of Operational Research, Elsevier, vol. 180(1), pages 354-368, July.
  4. Roland T. Rust & Mark I. Alpert, 1984. "An Audience Flow Model of Television Viewing Choice," Marketing Science, INFORMS, vol. 3(2), pages 113-124.
  5. Srinivas K. Reddy & Jay E. Aronson & Antonie Stam, 1998. "SPOT: Scheduling Programs Optimally for Television," Management Science, INFORMS, vol. 44(1), pages 83-102, January.
  6. Givon, Moshe & Grosfeld-Nir, Abraham, 2008. "Using partially observed Markov processes to select optimal termination time of TV shows," Omega, Elsevier, vol. 36(3), pages 477-485, June.
  7. Jeffrey H. Horen, 1980. "Scheduling of Network Television Programs," Management Science, INFORMS, vol. 26(4), pages 354-370, April.
  8. Allenby, Greg M. & Rossi, Peter E., 1998. "Marketing models of consumer heterogeneity," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 57-78, November.
  9. Danaher, Peter J., 1994. "Comparing naive with econometric market share models when competitors' actions are forecast," International Journal of Forecasting, Elsevier, vol. 10(2), pages 287-294, September.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Danaher, Peter & Dagger, Tracey, 2012. "Using a nested logit model to forecast television ratings," International Journal of Forecasting, Elsevier, vol. 28(3), pages 607-622.
  2. Alexandra Mello Schmidt & Dani Gamerman & Ajax Moreira, 1999. "An adaptive resampling scheme for cycle estimation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(5), pages 619-641.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:27:y:2011:i:4:p:1215-1240. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.