Advanced Search
MyIDEAS: Login to save this article or follow this journal

Regional unemployment forecasts with spatial interdependencies

Contents:

Author Info

  • Schanne, N.
  • Wapler, R.
  • Weyh, A.

Abstract

We forecast unemployment levels for the 176 German labour-market districts on a monthly basis. Because of their small sizes, strong spatial interdependencies exist between these regional units. To account for these, as well as for the heterogeneity in the regional development over time, we apply different versions of a univariate spatial GVAR model. When comparing the forecast precision with that of univariate time series methods, we find that the spatial model does indeed perform better, or at least as well. Hence, the spatial GVAR model provides an alternative or complementary approach to commonly used methods in regional forecasting which do not consider regional interdependencies.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6V92-4X30C12-1/2/ed6bc8967a2e6d8f418e74fafa2da593
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal International Journal of Forecasting.

Volume (Year): 26 (2010)
Issue (Month): 4 (October)
Pages: 908-926

as in new window
Handle: RePEc:eee:intfor:v:26:y::i:4:p:908-926

Contact details of provider:
Web page: http://www.elsevier.com/locate/ijforecast

Related research

Keywords: Forecasting practice Labour-market forecasting Macroeconomic forecasting Regional forecasting Time series;

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Kelejian, Harry H. & Prucha, Ingmar R., 2007. "The relative efficiencies of various predictors in spatial econometric models containing spatial lags," Regional Science and Urban Economics, Elsevier, vol. 37(3), pages 363-374, May.
  2. Michael Magura, 1998. "original: IO and spatial information as Bayesian priors in an employment forecasting model," The Annals of Regional Science, Springer, vol. 32(4), pages 495-503.
  3. Hyllerberg, S. & Engle, R.F. & Granger, C.W.J. & Yoo, B.S., 1988. "Seasonal Integration And Cointegration," Papers 0-88-2, Pennsylvania State - Department of Economics.
  4. J. Joseph Beaulieu & Jeffrey A. Miron, 1992. "Seasonal Unit Roots in Aggregate U.S. Data," NBER Technical Working Papers 0126, National Bureau of Economic Research, Inc.
  5. Schanne, N. & Wapler, R. & Weyh, A., 2010. "Regional unemployment forecasts with spatial interdependencies," International Journal of Forecasting, Elsevier, vol. 26(4), pages 908-926, October.
  6. Paulo Rodrigues & Denise Osborn, 1999. "Performance of seasonal unit root tests for monthly data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(8), pages 985-1004.
  7. Roberto Patuelli & Aura Reggiani & Peter Nijkamp & Uwe Blien, 2006. "New Neural Network Methods for Forecasting Regional Employment: An Analysis of German Labour Markets," Tinbergen Institute Discussion Papers 06-020/3, Tinbergen Institute.
  8. James H. Stock & Mark W. Watson, 1998. "A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series," NBER Working Papers 6607, National Bureau of Economic Research, Inc.
  9. Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-63, July.
  10. Konstantin A. Kholodilin & Boriss Siliverstovs & Stefan Kooths, 2007. "A Dynamic Panel Data Approach to the Forecasting of the GDP of German Länder," Discussion Papers of DIW Berlin 664, DIW Berlin, German Institute for Economic Research.
  11. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
  12. Franses, Philip Hans, 1991. "Seasonality, non-stationarity and the forecasting of monthly time series," International Journal of Forecasting, Elsevier, vol. 7(2), pages 199-208, August.
  13. Raffaella Giacomini & Clive W.J. Granger, 2002. "Aggregation of Space-Time Processes," Boston College Working Papers in Economics 582, Boston College Department of Economics.
  14. Graham Elliott & Allan Timmermann, 2008. "Economic Forecasting," Journal of Economic Literature, American Economic Association, vol. 46(1), pages 3-56, March.
  15. Pesaran, M.H. & Weiner, S.M., 2001. "Modelling Regional Interdependencies Using a Global Error-Correcting Macroeconometric Model," Cambridge Working Papers in Economics 0119, Faculty of Economics, University of Cambridge.
  16. Michael Beenstock & Daniel Felsenstein, 2007. "Spatial Vector Autoregressions," Spatial Economic Analysis, Taylor & Francis Journals, vol. 2(2), pages 167-196.
  17. Swanson, Norman R. & White, Halbert, 1997. "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 439-461, December.
  18. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, Elsevier.
  19. Badi H. Baltagi, 2008. "Forecasting with panel data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(2), pages 153-173.
  20. Edlund, Per-Olov & Karlsson, Sune, 1993. "Forecasting the Swedish unemployment rate VAR vs. transfer function modelling," International Journal of Forecasting, Elsevier, vol. 9(1), pages 61-76, April.
  21. Behrens, Kristian & Thisse, Jacques-Francois, 2007. "Regional economics: A new economic geography perspective," Regional Science and Urban Economics, Elsevier, vol. 37(4), pages 457-465, July.
  22. Uwe Blien & Alexandros Tassinopoulos, 2001. "Forecasting Regional Employment with the ENTROP Method," Regional Studies, Taylor & Francis Journals, vol. 35(2), pages 113-124.
  23. Graham Schindler & Philip Israilevich & Geoffrey Hewings, 1997. "Regional Economic Performance: An Integrated Approach," Regional Studies, Taylor & Francis Journals, vol. 31(2), pages 131-137.
  24. Giuseppe Arbia & Marco Bee & Giuseppe Espa, 2007. "Aggregation of regional economic time series with different spatial correlation structures," Department of Economics Working Papers 0720, Department of Economics, University of Trento, Italia.
  25. Klaus, Joachim & Maußner, Alfred, 1988. "Regionale Arbeitsmarktanalysen mittels vergleichender Arbeitsmarktbilanzen," Mitteilungen aus der Arbeitsmarkt- und Berufsforschung, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 21(1), pages 74-83.
  26. Osborn, Denise R. & Heravi, Saeed & Birchenhall, C. R., 1999. "Seasonal unit roots and forecasts of two-digit European industrial production," International Journal of Forecasting, Elsevier, vol. 15(1), pages 27-47, February.
  27. Harvey, Andrew, 2006. "Forecasting with Unobserved Components Time Series Models," Handbook of Economic Forecasting, Elsevier.
  28. Inoue, Atsushi & Kilian, Lutz, 2006. "On the selection of forecasting models," Journal of Econometrics, Elsevier, vol. 130(2), pages 273-306, February.
  29. Matias Mayor & Ana Jesus Lopez & Rigoberto Perez, 2007. "Forecasting Regional Employment with Shift-Share and ARIMA Modelling," Regional Studies, Taylor & Francis Journals, vol. 41(4), pages 543-551.
  30. Lutkepohl, Helmut, 2006. "Forecasting with VARMA Models," Handbook of Economic Forecasting, Elsevier.
  31. Rubén Hernández-Murillo & Michael T. Owyang, 2004. "The information content of regional employment data for forecasting aggregate conditions," Working Papers 2004-005, Federal Reserve Bank of St. Louis.
  32. [Reference to Proietti], Tommaso, 2000. "Comparing seasonal components for structural time series models," International Journal of Forecasting, Elsevier, vol. 16(2), pages 247-260.
  33. Oberhofer, Walter & Blien, Uwe & Tassinopoulos, Alexandros, 2000. "Forecasting Regional Employment With A Generalised Extrapolation Method," ERSA conference papers ersa00p170, European Regional Science Association.
  34. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
  35. Partridge, Mark D & Rickman, Dan S, 1998. "Generalizing the Bayesian Vector Autoregression Approach for Regional Interindustry Employment Forecasting," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(1), pages 62-72, January.
  36. Ray, W. D., 1989. "Rates of convergence to steady state for the linear growth version of a dynamic linear model (DLM)," International Journal of Forecasting, Elsevier, vol. 5(4), pages 537-545.
  37. Weller, Barry R., 1989. "National indicator series as quantitative predictors of small region monthly employment levels," International Journal of Forecasting, Elsevier, vol. 5(2), pages 241-247.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:26:y::i:4:p:908-926. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.