Advanced Search
MyIDEAS: Login to save this article or follow this journal

Bayesian forecasting of parts demand

Contents:

Author Info

  • Yelland, Phillip M.
Registered author(s):

    Abstract

    As supply chains for high technology products increase in complexity, and as the performance expectations of these supply chains also increase, forecasts of parts demands have become indispensable to effective operations management in these markets. Unfortunately, rapid technological change and an abundance of product configurations mean that the demand for parts in high-tech products is frequently volatile and hard to forecast. The paper describes a Bayesian statistical model which was developed to forecast the parts demand for Sun Microsystems, Inc., a major vendor of enterprise computer products. The model embodies a parametric description of the part's life cycle, allowing it to anticipate changes in demand over time. Furthermore, using hierarchical priors, the model is able to pool demand patterns for a collection of parts, producing calibrated forecasts for new parts with little or no demand history. The paper discusses the problem addressed by the model, the model itself, and a procedure for calibrating it, then compares its forecast performance with those of alternatives.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6V92-4Y41MD5-1/2/48bb434c92c73727b2b9ccb1903c50ca
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal International Journal of Forecasting.

    Volume (Year): 26 (2010)
    Issue (Month): 2 (April)
    Pages: 374-396

    as in new window
    Handle: RePEc:eee:intfor:v:26:y::i:2:p:374-396

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/ijforecast

    Related research

    Keywords: Bayesian methods Demand forecasting Forecasting practice State space models Supply chain;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. John A. Norton & Frank M. Bass, 1987. "A Diffusion Theory Model of Adoption and Substitution for Successive Generations of High-Technology Products," Management Science, INFORMS, vol. 33(9), pages 1069-1086, September.
    2. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-44, January.
    3. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    4. Klassen, Robert D. & Flores, Benito E., 2001. "Forecasting practices of Canadian firms: Survey results and comparisons," International Journal of Production Economics, Elsevier, vol. 70(2), pages 163-174, March.
    5. Rob J. Hyndman & Yeasmin Khandakar, 2007. "Automatic time series forecasting: the forecast package for R," Monash Econometrics and Business Statistics Working Papers 6/07, Monash University, Department of Econometrics and Business Statistics.
    6. Thompson, Patrick A., 1992. "A statistician in search of a population," International Journal of Forecasting, Elsevier, vol. 8(1), pages 103-104, June.
    7. Hau L. Lee & V. Padmanabhan & Seungjin Whang, 2004. "Comments on "Information Distortion in a Supply Chain: The Bullwhip Effect"," Management Science, INFORMS, vol. 50(12_supple), pages 1887-1893, December.
    8. Ashley, Richard, 2003. "Statistically significant forecasting improvements: how much out-of-sample data is likely necessary?," International Journal of Forecasting, Elsevier, vol. 19(2), pages 229-239.
    9. Giacomini, Raffaella & White, Halbert, 2003. "Tests of Conditional Predictive Ability," University of California at San Diego, Economics Working Paper Series qt5jk0j5jh, Department of Economics, UC San Diego.
    10. Fruhwirth-Schnatter, Sylvia & Kaufmann, Sylvia, 2008. "Model-Based Clustering of Multiple Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 78-89, January.
    11. Koning, Alex J. & Franses, Philip Hans & Hibon, Michele & Stekler, H.O., 2005. "The M3 competition: Statistical tests of the results," International Journal of Forecasting, Elsevier, vol. 21(3), pages 397-409.
    12. Armstrong, J. Scott & Collopy, Fred, 1992. "Error measures for generalizing about forecasting methods: Empirical comparisons," International Journal of Forecasting, Elsevier, vol. 8(1), pages 69-80, June.
    13. John Boylan, 2005. "Intermittent and Lumpy Demand: A Forecasting Challenge," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 1, pages 36-42, June.
    14. Yelland, Phillip M., 2009. "Bayesian forecasting for low-count time series using state-space models: An empirical evaluation for inventory management," International Journal of Production Economics, Elsevier, vol. 118(1), pages 95-103, March.
    15. Lydia Shenstone & Rob J. Hyndman, 2003. "Stochastic models underlying Croston's method for intermittent demand forecasting," Monash Econometrics and Business Statistics Working Papers 1/03, Monash University, Department of Econometrics and Business Statistics.
    16. Kenneth Gilbert, 2005. "An ARIMA Supply Chain Model," Management Science, INFORMS, vol. 51(2), pages 305-310, February.
    17. McCabe, B.P.M. & Martin, G.M., 2005. "Bayesian predictions of low count time series," International Journal of Forecasting, Elsevier, vol. 21(2), pages 315-330.
    18. Hau L. Lee & V. Padmanabhan & Seungjin Whang, 2004. "Information Distortion in a Supply Chain: The Bullwhip Effect," Management Science, INFORMS, vol. 50(12_supple), pages 1875-1886, December.
    19. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    20. Everette S. Gardner, 1990. "Evaluating Forecast Performance in an Inventory Control System," Management Science, INFORMS, vol. 36(4), pages 490-499, April.
    21. J. Scott Armstrong & Kesten C. Green, 2005. "Demand Forecasting: Evidence-based Methods," Monash Econometrics and Business Statistics Working Papers 24/05, Monash University, Department of Econometrics and Business Statistics.
    22. Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002. "A state space framework for automatic forecasting using exponential smoothing methods," International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
    23. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    24. Harvey, Andrew & Snyder, Ralph D., 1990. "Structural time series models in inventory control," International Journal of Forecasting, Elsevier, vol. 6(2), pages 187-198, July.
    25. S. Illeris & G. Akehurst, 2002. "Introduction," The Service Industries Journal, Taylor & Francis Journals, vol. 22(1), pages 1-3, January.
    26. Dalrymple, Douglas J., 1987. "Sales forecasting practices: Results from a United States survey," International Journal of Forecasting, Elsevier, vol. 3(3-4), pages 379-391.
    27. Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543.
    28. Armstrong, J. Scott, 2007. "Significance tests harm progress in forecasting," International Journal of Forecasting, Elsevier, vol. 23(2), pages 321-327.
    29. Snyder, R.D. & Koehler, A. & Ord, K., 1999. "Forecasting for Inventory Control with Exponential Smoothing," Monash Econometrics and Business Statistics Working Papers 10/99, Monash University, Department of Econometrics and Business Statistics.
    30. Stekler, H.O., 2007. "Significance tests harm progress in forecasting: Comment," International Journal of Forecasting, Elsevier, vol. 23(2), pages 329-330.
    31. Fildes, Robert, 1992. "The evaluation of extrapolative forecasting methods," International Journal of Forecasting, Elsevier, vol. 8(1), pages 81-98, June.
    32. Rob J. Hyndman & Anne B. Koehler, 2005. "Another Look at Measures of Forecast Accuracy," Monash Econometrics and Business Statistics Working Papers 13/05, Monash University, Department of Econometrics and Business Statistics.
    33. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
    34. Makridakis, Spyros, 1993. "Accuracy measures: theoretical and practical concerns," International Journal of Forecasting, Elsevier, vol. 9(4), pages 527-529, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:26:y::i:2:p:374-396. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.