IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v53y2013i3p671-677.html
   My bibliography  Save this article

Stochastic Pareto-optimal reinsurance policies

Author

Listed:
  • Zeng, Xudong
  • Luo, Shangzhen

Abstract

We model reinsurance as a stochastic cooperation game in a continuous-time framework. Employing stochastic control theory and dynamic programming techniques, we study Pareto-optimal solutions to the game and derive the corresponding Hamilton–Jacobi–Bellman (HJB) equation. After analyzing the HJB equation, we show that the Pareto-optimal policies may be classified into either unlimited excess of loss functions or proportional functions based on different premium share principles. To illustrate our results, we solve several examples for explicit solutions.

Suggested Citation

  • Zeng, Xudong & Luo, Shangzhen, 2013. "Stochastic Pareto-optimal reinsurance policies," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 671-677.
  • Handle: RePEc:eee:insuma:v:53:y:2013:i:3:p:671-677
    DOI: 10.1016/j.insmatheco.2013.09.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016766871300139X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2013.09.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suijs, J.P.M. & De Waegenaere, A.M.B. & Borm, P.E.M., 1996. "Stochastic Cooperative Games in Insurance and Reinsurance," Other publications TiSEM f2cd7428-cd39-4462-af76-2, Tilburg University, School of Economics and Management.
    2. Zeng, Xudong, 2010. "Optimal reinsurance with a rescuing procedure," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 397-405, April.
    3. Suijs, Jeroen & De Waegenaere, Anja & Borm, Peter, 1998. "Stochastic cooperative games in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 22(3), pages 209-228, July.
    4. S. David Promislow & Virginia Young, 2005. "Minimizing the Probability of Ruin When Claims Follow Brownian Motion with Drift," North American Actuarial Journal, Taylor & Francis Journals, vol. 9(3), pages 110-128.
    5. Borch, Karl, 1960. "Reciprocal Reinsurance Treaties," ASTIN Bulletin, Cambridge University Press, vol. 1(4), pages 170-191, December.
    6. Kaluszka, Marek, 2001. "Optimal reinsurance under mean-variance premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 28(1), pages 61-67, February.
    7. A. Y. Golubin, 2006. "Pareto‐Optimal Insurance Policies in the Models with a Premium Based on the Actuarial Value," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(3), pages 469-487, September.
    8. Luo, Shangzhen & Taksar, Michael & Tsoi, Allanus, 2008. "On reinsurance and investment for large insurance portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 434-444, February.
    9. Luo, Shangzhen & Taksar, Michael, 2011. "On absolute ruin minimization under a diffusion approximation model," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 123-133, January.
    10. Gerber, Hans U., 1978. "Pareto-Optimal Risk Exchanges and Related Decision Problems," ASTIN Bulletin, Cambridge University Press, vol. 10(1), pages 25-33, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Danping Li & Dongchen Li & Virginia R. Young, 2017. "Optimality of Excess-Loss Reinsurance under a Mean-Variance Criterion," Papers 1703.01984, arXiv.org, revised Mar 2017.
    2. Li, Danping & Li, Dongchen & Young, Virginia R., 2017. "Optimality of excess-loss reinsurance under a mean–variance criterion," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 82-89.
    3. Chen, Shumin & Liu, Yanchu & Weng, Chengguo, 2019. "Dynamic risk-sharing game and reinsurance contract design," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 216-231.
    4. Hu, Duni & Wang, Hailong, 2019. "Reinsurance contract design when the insurer is ambiguity-averse," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 241-255.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taksar, Michael & Zeng, Xudong, 2011. "Optimal non-proportional reinsurance control and stochastic differential games," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 64-71, January.
    2. Cai, Jun & Liu, Haiyan & Wang, Ruodu, 2017. "Pareto-optimal reinsurance arrangements under general model settings," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 24-37.
    3. Gu, Ailing & Guo, Xianping & Li, Zhongfei & Zeng, Yan, 2012. "Optimal control of excess-of-loss reinsurance and investment for insurers under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 674-684.
    4. J. Puerto & F. Fernández & Y. Hinojosa, 2008. "Partially ordered cooperative games: extended core and Shapley value," Annals of Operations Research, Springer, vol. 158(1), pages 143-159, February.
    5. Donald Nganmegni Njoya & Issofa Moyouwou & Nicolas Gabriel Andjiga, 2021. "The equal-surplus Shapley value for chance-constrained games on finite sample spaces," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 463-499, June.
    6. Borglin, Anders & Flåm, Sjur, 2007. "Risk Exchange as a Market or Production Game," Working Papers 2007:16, Lund University, Department of Economics.
    7. Li, Peng & Lim, Andrew E.B. & Shanthikumar, J. George, 2010. "Optimal risk transfer for agents with germs," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 1-12, August.
    8. Wenjun Jiang & Jiandong Ren & Ričardas Zitikis, 2017. "Optimal Reinsurance Policies under the VaR Risk Measure When the Interests of Both the Cedent and the Reinsurer Are Taken into Account," Risks, MDPI, vol. 5(1), pages 1-22, February.
    9. Burgert, Christian & Rüschendorf, Ludger, 2008. "Allocation of risks and equilibrium in markets with finitely many traders," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 177-188, February.
    10. Jiang, Wenjun & Ren, Jiandong & Yang, Chen & Hong, Hanping, 2019. "On optimal reinsurance treaties in cooperative game under heterogeneous beliefs," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 173-184.
    11. Suijs, J.P.M., 1999. "Price Uncertainty in Linear Production Situations," Discussion Paper 1999-91, Tilburg University, Center for Economic Research.
    12. Laszlo A. Koczy, 2019. "The risk-based core for cooperative games with uncertainty," CERS-IE WORKING PAPERS 1906, Institute of Economics, Centre for Economic and Regional Studies.
    13. Liang, Zhibin & Bayraktar, Erhan, 2014. "Optimal reinsurance and investment with unobservable claim size and intensity," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 156-166.
    14. Luo, Shangzhen & Taksar, Michael, 2011. "On absolute ruin minimization under a diffusion approximation model," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 123-133, January.
    15. Aase, Knut K., 2006. "Optimal Risk-Sharing and Deductables in Insurance," Discussion Papers 2006/24, Norwegian School of Economics, Department of Business and Management Science.
    16. Landriault, David & Li, Bin & Li, Danping & Li, Dongchen, 2016. "A pair of optimal reinsurance–investment strategies in the two-sided exit framework," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 284-294.
    17. Zuofeng Gao & Hongxin Bai & Suting Zhang & Yongbo Yu & Chunyan Han & Hua Zhang, 2008. "The -Core of a -person Stochastic Cooperative Game," Modern Applied Science, Canadian Center of Science and Education, vol. 2(2), pages 1-71, March.
    18. Zhang, Xin-Li & Zhang, Ke-Cun & Yu, Xing-Jiang, 2009. "Optimal proportional reinsurance and investment with transaction costs, I: Maximizing the terminal wealth," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 473-478, June.
    19. Bai, Lihua & Guo, Junyi, 2008. "Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 968-975, June.
    20. Cerqueti, Roy & Foschi, Rachele & Spizzichino, Fabio, 2009. "A spatial mixed Poisson framework for combination of excess-of-loss and proportional reinsurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 59-64, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:53:y:2013:i:3:p:671-677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.