IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v52y2013i3p542-549.html
   My bibliography  Save this article

Lifetime dependence modelling using a truncated multivariate gamma distribution

Author

Listed:
  • Alai, Daniel H.
  • Landsman, Zinoviy
  • Sherris, Michael

Abstract

Systematic improvements in mortality increases dependence in the survival distributions of insured lives, which is not accounted for in standard life tables and actuarial models used for annuity pricing and reserving. Systematic longevity risk also undermines the law of large numbers, a law that is relied on in the risk management of life insurance and annuity portfolios. This paper applies a multivariate gamma distribution to incorporate dependence. Lifetimes are modelled using a truncated multivariate gamma distribution that induces dependence through a shared gamma distributed component. Model parameter estimation is developed based on the method of moments and generalized to allow for truncated observations. The impact of dependence within a portfolio, or cohort, of lives with similar risk characteristics is demonstrated by applying the model to annuity valuation. Dependence is shown to have a significant impact on the risk of the annuity portfolio as compared with traditional actuarial methods that implicitly assume independent lifetimes.

Suggested Citation

  • Alai, Daniel H. & Landsman, Zinoviy & Sherris, Michael, 2013. "Lifetime dependence modelling using a truncated multivariate gamma distribution," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 542-549.
  • Handle: RePEc:eee:insuma:v:52:y:2013:i:3:p:542-549
    DOI: 10.1016/j.insmatheco.2013.03.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016766871300053X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2013.03.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Denuit, Michel, 2008. "Comonotonic approximations to quantiles of life annuity conditional expected present value," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 831-838, April.
    2. Varadhan, Ravi & Gilbert, Paul, 2009. "BB: An R Package for Solving a Large System of Nonlinear Equations and for Optimizing a High-Dimensional Nonlinear Objective Function," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i04).
    3. Mathai, A. M. & Moschopoulos, P. G., 1991. "On a multivariate gamma," Journal of Multivariate Analysis, Elsevier, vol. 39(1), pages 135-153, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alai, Daniel H. & Landsman, Zinoviy & Sherris, Michael, 2016. "Modelling lifetime dependence for older ages using a multivariate Pareto distribution," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 272-285.
    2. Martín Egozcue & Jiang Wu & Ričardas Zitikis, 2017. "Optimal two-stage pricing strategies from the seller’s perspective under the uncertainty of buyer’s decisions," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-25, December.
    3. Denuit, Michel & Lu, Yang, 2020. "Wishart-Gamma mixtures for multiperil experience ratemaking, frequency-severity experience rating and micro-loss reserving," LIDAM Discussion Papers ISBA 2020016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Michel Denuit & Yang Lu, 2021. "Wishart‐gamma random effects models with applications to nonlife insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(2), pages 443-481, June.
    5. Alai, Daniel H. & Landsman, Zinoviy & Sherris, Michael, 2015. "A multivariate Tweedie lifetime model: Censoring and truncation," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 203-213.
    6. Furman, Edward & Kuznetsov, Alexey & Zitikis, Ričardas, 2018. "Weighted risk capital allocations in the presence of systematic risk," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 75-81.
    7. Zhou, Ming & Dhaene, Jan & Yao, Jing, 2018. "An approximation method for risk aggregations and capital allocation rules based on additive risk factor models," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 92-100.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
    2. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    3. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted risk capital allocations," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 263-269, October.
    4. Martin Gaynor & Nirav Mehta & Seth Richards-Shubik, 2023. "Optimal Contracting with Altruistic Agents: Medicare Payments for Dialysis Drugs," American Economic Review, American Economic Association, vol. 113(6), pages 1530-1571, June.
    5. Legrand, Catherine & Munda, Marco & Janssen, P. & Duchateau, L., 2012. "A general class of time-varying coefficients models for right censored data," LIDAM Discussion Papers ISBA 2012041, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Nathan H. Miller & Matthew Osborne, 2014. "Spatial differentiation and price discrimination in the cement industry: evidence from a structural model," RAND Journal of Economics, RAND Corporation, vol. 45(2), pages 221-247, June.
    7. Chiragiev, Arthur & Landsman, Zinoviy, 2009. "Multivariate flexible Pareto model: Dependency structure, properties and characterizations," Statistics & Probability Letters, Elsevier, vol. 79(16), pages 1733-1743, August.
    8. Bella Vakulenko‐Lagun & Micha Mandel & Rebecca A. Betensky, 2020. "Inverse probability weighting methods for Cox regression with right‐truncated data," Biometrics, The International Biometric Society, vol. 76(2), pages 484-495, June.
    9. Alai, Daniel H. & Landsman, Zinoviy & Sherris, Michael, 2015. "A multivariate Tweedie lifetime model: Censoring and truncation," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 203-213.
    10. Galea, Manuel & de Castro, Mário, 2017. "Robust inference in a linear functional model with replications using the t distribution," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 134-145.
    11. Nikoloulopoulos, Aristidis K., 2023. "Efficient and feasible inference for high-dimensional normal copula regression models," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    12. Pitselis, Georgios, 2020. "Multi-stage nested classification credibility quantile regression model," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 162-176.
    13. Predrag M. Popović & Miroslav M. Ristić & Aleksandar S. Nastić, 2016. "A geometric bivariate time series with different marginal parameters," Statistical Papers, Springer, vol. 57(3), pages 731-753, September.
    14. Božidar Popović & Saralees Nadarajah & Miroslav Ristić, 2013. "A new non-linear AR(1) time series model having approximate beta marginals," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(1), pages 71-92, January.
    15. A. Mathal & P. Moschopoulos, 1992. "A form of multivariate gamma distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 44(1), pages 97-106, March.
    16. Bruno Ebner & Bernhard Klar & Simos G. Meintanis, 2018. "Fourier inference for stochastic volatility models with heavy-tailed innovations," Statistical Papers, Springer, vol. 59(3), pages 1043-1060, September.
    17. Michel Denuit, 2009. "Life Anuities with Stochastic Survival Probabilities: A Review," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 463-489, September.
    18. Chien-Lin Su & Russell J. Steele & Ian Shrier, 2021. "The semiparametric accelerated trend-renewal process for recurrent event data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(3), pages 357-387, July.
    19. Martin Gaynor & Nirav Mehta & Seth Richards-Shubik, 2020. "Optimal Contracting with Altruistic Agents: A Structural Model of Medicare Payments for Dialysis Drugs," NBER Working Papers 27172, National Bureau of Economic Research, Inc.
    20. HaiYing Wang & Nancy Flournoy & Eloi Kpamegan, 2014. "A new bounded log-linear regression model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(5), pages 695-720, July.

    More about this item

    Keywords

    Systematic longevity risk; Dependence; Multivariate gamma; Lifetime distribution; Annuity valuation;
    All these keywords.

    JEL classification:

    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:52:y:2013:i:3:p:542-549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.