IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v50y2012i3p371-384.html
   My bibliography  Save this article

Multi-period mean–variance portfolio selection with regime switching and a stochastic cash flow

Author

Listed:
  • Wu, Huiling
  • Li, Zhongfei

Abstract

This paper investigates a non-self-financing portfolio optimization problem under the framework of multi-period mean–variance with Markov regime switching and a stochastic cash flow. The stochastic cash flow can be explained as capital additions or withdrawals during the investment process. Specially, the cash flow is the surplus process or the risk process of an insurer at each period. The returns of assets and amount of the cash flow all depend on the states of a stochastic market which are assumed to follow a discrete-time Markov chain. We analyze the existence of optimal solutions, and derive the optimal strategy and the efficient frontier in closed-form. Several special cases are discussed and numerical examples are given to demonstrate the effect of cash flow.

Suggested Citation

  • Wu, Huiling & Li, Zhongfei, 2012. "Multi-period mean–variance portfolio selection with regime switching and a stochastic cash flow," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 371-384.
  • Handle: RePEc:eee:insuma:v:50:y:2012:i:3:p:371-384
    DOI: 10.1016/j.insmatheco.2012.01.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668712000042
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2012.01.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    2. Leippold, Markus & Trojani, Fabio & Vanini, Paolo, 2004. "A geometric approach to multiperiod mean variance optimization of assets and liabilities," Journal of Economic Dynamics and Control, Elsevier, vol. 28(6), pages 1079-1113, March.
    3. Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
    4. U. Çakmak & S. Özekici, 2006. "Portfolio optimization in stochastic markets," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(1), pages 151-168, February.
    5. Ping Chen & Hailiang Yang, 2011. "Markowitz's Mean-Variance Asset-Liability Management with Regime Switching: A Multi-Period Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 18(1), pages 29-50.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reza Keykhaei, 2020. "Portfolio selection in a regime switching market with a bankruptcy state and an uncertain exit-time: multi-period mean–variance formulation," Operational Research, Springer, vol. 20(3), pages 1231-1254, September.
    2. Huiling Wu & Chengguo Weng & Yan Zeng, 2018. "Equilibrium consumption and portfolio decisions with stochastic discount rate and time-varying utility functions," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(2), pages 541-582, March.
    3. Huiling Wu, 2016. "Optimal Investment-Consumption Strategy under Inflation in a Markovian Regime-Switching Market," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-17, July.
    4. Zeng, Yan & Li, Zhongfei & Lai, Yongzeng, 2013. "Time-consistent investment and reinsurance strategies for mean–variance insurers with jumps," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 498-507.
    5. Junna Bi & Zhibin Liang & Kam Chuen Yuen, 2019. "Optimal mean–variance investment/reinsurance with common shock in a regime-switching market," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 90(1), pages 109-135, August.
    6. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
    7. Haixiang Yao & Xun Li & Zhifeng Hao & Yong Li, 2016. "Dynamic asset–liability management in a Markov market with stochastic cash flows," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1575-1597, October.
    8. Zhou, Zhongbao & Xiao, Helu & Yin, Jialing & Zeng, Ximei & Lin, Ling, 2016. "Pre-commitment vs. time-consistent strategies for the generalized multi-period portfolio optimization with stochastic cash flows," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 187-202.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangyu Cui & Xun Li & Duan Li, 2013. "Unified Framework of Mean-Field Formulations for Optimal Multi-period Mean-Variance Portfolio Selection," Papers 1303.1064, arXiv.org.
    2. Yao, Haixiang & Zeng, Yan & Chen, Shumin, 2013. "Multi-period mean–variance asset–liability management with uncontrolled cash flow and uncertain time-horizon," Economic Modelling, Elsevier, vol. 30(C), pages 492-500.
    3. Wu, Huiling & Chen, Hua, 2015. "Nash equilibrium strategy for a multi-period mean–variance portfolio selection problem with regime switching," Economic Modelling, Elsevier, vol. 46(C), pages 79-90.
    4. Bian, Lihua & Li, Zhongfei & Yao, Haixiang, 2018. "Pre-commitment and equilibrium investment strategies for the DC pension plan with regime switching and a return of premiums clause," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 78-94.
    5. Yao, Haixiang & Lai, Yongzeng & Li, Yong, 2013. "Continuous-time mean–variance asset–liability management with endogenous liabilities," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 6-17.
    6. Wei, Jiaqin & Wang, Tianxiao, 2017. "Time-consistent mean–variance asset–liability management with random coefficients," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 84-96.
    7. Yao, Haixiang & Li, Zhongfei & Li, Duan, 2016. "Multi-period mean-variance portfolio selection with stochastic interest rate and uncontrollable liability," European Journal of Operational Research, Elsevier, vol. 252(3), pages 837-851.
    8. Briec, Walter & Kerstens, Kristiaan, 2009. "Multi-horizon Markowitz portfolio performance appraisals: A general approach," Omega, Elsevier, vol. 37(1), pages 50-62, February.
    9. Zhang, Miao & Chen, Ping, 2016. "Mean–variance asset–liability management under constant elasticity of variance process," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 11-18.
    10. Chen, Zhiping & Li, Gang & Zhao, Yonggan, 2014. "Time-consistent investment policies in Markovian markets: A case of mean–variance analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 293-316.
    11. Zeng, Yan & Li, Zhongfei & Lai, Yongzeng, 2013. "Time-consistent investment and reinsurance strategies for mean–variance insurers with jumps," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 498-507.
    12. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2013. "On the equivalence of quadratic optimization problems commonly used in portfolio theory," European Journal of Operational Research, Elsevier, vol. 229(3), pages 637-644.
    13. Yao, Haixiang & Li, Zhongfei & Chen, Shumin, 2014. "Continuous-time mean–variance portfolio selection with only risky assets," Economic Modelling, Elsevier, vol. 36(C), pages 244-251.
    14. Zhou, Zhongbao & Xiao, Helu & Yin, Jialing & Zeng, Ximei & Lin, Ling, 2016. "Pre-commitment vs. time-consistent strategies for the generalized multi-period portfolio optimization with stochastic cash flows," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 187-202.
    15. Wong, K.C. & Yam, S.C.P. & Zeng, J., 2019. "Mean-risk portfolio management with bankruptcy prohibition," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 153-172.
    16. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2015. "On the exact solution of the multi-period portfolio choice problem for an exponential utility under return predictability," European Journal of Operational Research, Elsevier, vol. 246(2), pages 528-542.
    17. Qian Zhao & Jiaqin Wei & Rongming Wang, 2013. "Mean-Variance Asset-Liability Management with State-Dependent Risk Aversion," Papers 1304.7882, arXiv.org.
    18. Wei, J. & Wong, K.C. & Yam, S.C.P. & Yung, S.P., 2013. "Markowitz’s mean–variance asset–liability management with regime switching: A time-consistent approach," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 281-291.
    19. Zhang, Ling & Zhang, Hao & Yao, Haixiang, 2018. "Optimal investment management for a defined contribution pension fund under imperfect information," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 210-224.
    20. Taras Bodnar & Nestor Parolya & Wolfgang Schmid, 2015. "A closed-form solution of the multi-period portfolio choice problem for a quadratic utility function," Annals of Operations Research, Springer, vol. 229(1), pages 121-158, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:50:y:2012:i:3:p:371-384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.