Advanced Search
MyIDEAS: Login to save this article or follow this journal

An application of comonotonicity theory in a stochastic life annuity framework

Contents:

Author Info

  • Liu, Xiaoming
  • Jang, Jisoo
  • Mee Kim, Sun
Registered author(s):

    Abstract

    A life annuity contract is an insurance instrument which pays pre-scheduled living benefits conditional on the survival of the annuitant. In order to manage the risk borne by annuity providers, one needs to take into account all sources of uncertainty that affect the value of future obligations under the contract. In this paper, we define the concept of annuity rate as the conditional expected present value random variable of future payments of the annuity, given the future dynamics of its risk factors. The annuity rate deals with the non-diversifiable systematic risk contained in the life annuity contract, and it involves mortality risk as well as investment risk. While it is plausible to assume that there is no correlation between the two risks, each affects the annuity rate through a combination of dependent random variables. In order to understand the probabilistic profile of the annuity rate, we apply comonotonicity theory to approximate its quantile function. We also derive accurate upper and lower bounds for prediction intervals for annuity rates. We use the Lee-Carter model for mortality risk and the Vasicek model for the term structure of interest rates with an annually renewable fixed-income investment policy. Different investment strategies can be handled using this framework.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6V8N-51MDS8X-1/2/81e2cece7c1cbf82e65e5be1664cf612
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Insurance: Mathematics and Economics.

    Volume (Year): 48 (2011)
    Issue (Month): 2 (March)
    Pages: 271-279

    as in new window
    Handle: RePEc:eee:insuma:v:48:y:2011:i:2:p:271-279

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/inca/505554

    Related research

    Keywords:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Denuit, Michel, 2008. "Comonotonic approximations to quantiles of life annuity conditional expected present value," Insurance: Mathematics and Economics, Elsevier, Elsevier, vol. 42(2), pages 831-838, April.
    2. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: applications," Insurance: Mathematics and Economics, Elsevier, Elsevier, vol. 31(2), pages 133-161, October.
    3. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, Elsevier, vol. 31(1), pages 3-33, August.
    4. Kaas, Rob & Dhaene, Jan & Goovaerts, Marc J., 2000. "Upper and lower bounds for sums of random variables," Insurance: Mathematics and Economics, Elsevier, Elsevier, vol. 27(2), pages 151-168, October.
    5. Hoedemakers, Tom & Darkiewicz, Grzegorz & Goovaerts, Marc, 2005. "Approximations for life annuity contracts in a stochastic financial environment," Insurance: Mathematics and Economics, Elsevier, Elsevier, vol. 37(2), pages 239-269, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:48:y:2011:i:2:p:271-279. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.