Advanced Search
MyIDEAS: Login to save this article or follow this journal

A new stable and more responsive cost sharing solution for minimum cost spanning tree problems

Contents:

Author Info

  • Trudeau, Christian

Abstract

Minimum cost spanning tree (mcst) problems try to connect agents efficiently to a source when agents are located at different points in space and the cost of using an edge is fixed. We introduce a new cost sharing solution that always selects a point in the core and that is more responsive to changes than the well-studied folk solution. The paper shows a sufficient condition for the concavity of the stand-alone cost game. Modifying the game to make sure the condition is satisfied and then taking the Shapley value gives the new solution.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/pii/S0899825611001497
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Games and Economic Behavior.

Volume (Year): 75 (2012)
Issue (Month): 1 ()
Pages: 402-412

as in new window
Handle: RePEc:eee:gamebe:v:75:y:2012:i:1:p:402-412

Contact details of provider:
Web page: http://www.elsevier.com/locate/inca/622836

Related research

Keywords: Minimum cost spanning tree; Private property; Common property; Core; Folk solution;

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Dutta, Bhaskar & Kar, Anirban, 2004. "Cost monotonicity, consistency and minimum cost spanning tree games," Games and Economic Behavior, Elsevier, vol. 48(2), pages 223-248, August.
  2. Kar, Anirban, 2002. "Axiomatization of the Shapley Value on Minimum Cost Spanning Tree Games," Games and Economic Behavior, Elsevier, vol. 38(2), pages 265-277, February.
  3. Gustavo Bergantiños & Juan Vidal-Puga, 2005. "A fair rule in minimum cost spanning tree problems," Game Theory and Information 0504001, EconWPA.
  4. Feltkamp, V. & Tijs, S.H. & Muto, S., 1994. "On the irreducible core and the equal remaining obligations rule of minimum cost spanning extension problems," Discussion Paper 1994-106, Tilburg University, Center for Economic Research.
  5. Bergantiños, Gustavo & Vidal-Puga, Juan, 2009. "Additivity in minimum cost spanning tree problems," Journal of Mathematical Economics, Elsevier, vol. 45(1-2), pages 38-42, January.
  6. Gustavo Bergantinos & Juan Vidal-Puga, 2008. "On Some Properties of Cost Allocation Rules in Minimum Cost Spanning Tree Problems," Czech Economic Review, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, vol. 2(3), pages 251-267, December.
  7. Brânzei, R. & Moretti, S. & Norde, H.W. & Tijs, S.H., 2004. "The P-value for cost sharing in minimum cost spanning tree situations," Open Access publications from Tilburg University urn:nbn:nl:ui:12-142598, Tilburg University.
  8. Nouweland, C.G.A.M. van den & Borm, P.E.M., 1991. "On the convexity of communication games," Open Access publications from Tilburg University urn:nbn:nl:ui:12-146634, Tilburg University.
  9. Bogomolnaia, Anna & Moulin, Hervé, 2010. "Sharing a minimal cost spanning tree: Beyond the Folk solution," Games and Economic Behavior, Elsevier, vol. 69(2), pages 238-248, July.
  10. Tijs, S.H. & Brânzei, R. & Moretti, S. & Norde, H.W., 2004. "Obligation Rules for Minimum Cost Spanning Tree Situations and their Monotonicity Properties," Discussion Paper 2004-53, Tilburg University, Center for Economic Research.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Christian Trudeau, 2014. "Characterizations of the cycle-complete and folk solutions for minimum cost spanning tree problems," Social Choice and Welfare, Springer, vol. 42(4), pages 941-957, April.
  2. Norde, H.W., 2013. "The Degree and Cost Adjusted Folk Solution for Minimum Cost Spanning Tree Games," Discussion Paper 2013-039, Tilburg University, Center for Economic Research.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:75:y:2012:i:1:p:402-412. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.