Advanced Search
MyIDEAS: Login to save this article or follow this journal

Regret minimization in repeated matrix games with variable stage duration

Contents:

Author Info

  • Mannor, Shie
  • Shimkin, Nahum
Registered author(s):

    Abstract

    Regret minimization in repeated matrix games has been extensively studied ever since Hannan's seminal paper [Hannan, J., 1957. Approximation to Bayes risk in repeated play. In: Dresher, M., Tucker, A.W., Wolfe, P. (Eds.), Contributions to the Theory of Games, vol. III. Ann. of Math. Stud., vol. 39, Princeton Univ. Press, Princeton, NJ, pp. 97-193]. Several classes of no-regret strategies now exist; such strategies secure a long-term average payoff as high as could be obtained by the fixed action that is best, in hindsight, against the observed action sequence of the opponent. We consider an extension of this framework to repeated games with variable stage duration, where the duration of each stage may depend on actions of both players, and the performance measure of interest is the average payoff per unit time. We start by showing that no-regret strategies, in the above sense, do not exist in general. Consequently, we consider two classes of adaptive strategies, one based on Blackwell's approachability theorem and the other on calibrated play, and examine their performance guarantees. We further provide sufficient conditions for existence of no-regret strategies in this model.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6WFW-4PR3GBX-4/1/8f4133c256f00856c5758e8314acb646
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Games and Economic Behavior.

    Volume (Year): 63 (2008)
    Issue (Month): 1 (May)
    Pages: 227-258

    as in new window
    Handle: RePEc:eee:gamebe:v:63:y:2008:i:1:p:227-258

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/inca/622836

    Related research

    Keywords:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Kalai, Ehud & Lehrer, Ehud & Smorodinsky, Rann, 1999. "Calibrated Forecasting and Merging," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 151-169, October.
    2. Sergiu Hart, 2004. "Adaptive Heuristics," Levine's Bibliography 122247000000000471, UCLA Department of Economics.
    3. Lehrer, Ehud, 2003. "A wide range no-regret theorem," Games and Economic Behavior, Elsevier, vol. 42(1), pages 101-115, January.
    4. Foster, Dean P. & Vohra, Rakesh, 1999. "Regret in the On-Line Decision Problem," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 7-35, October.
    5. Rustichini, A., 1998. "Minimizing Regret: The General Case," Discussion Paper 1998-41, Tilburg University, Center for Economic Research.
    6. Fudenberg, Drew & Levine, David K., 1999. "Conditional Universal Consistency," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 104-130, October.
    7. Freund, Yoav & Schapire, Robert E., 1999. "Adaptive Game Playing Using Multiplicative Weights," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 79-103, October.
    8. Fudenberg, Drew & Levine, David K., 1999. "An Easier Way to Calibrate," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 131-137, October.
    9. S. Hart & A. Mas-Collel, 2010. "A Simple Adaptive Procedure Leading to Correlated Equilibrium," Levine's Working Paper Archive 572, David K. Levine.
    10. Sergiu Hart & Andreu Mas-Colell, 1999. "A General Class of Adaptive Strategies," Game Theory and Information 9904001, EconWPA, revised 23 Mar 2000.
    11. Foster, Dean P. & Vohra, Rakesh V., 1997. "Calibrated Learning and Correlated Equilibrium," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 40-55, October.
    12. Dean P. Foster, 1997. "A Proof of Calibration Via Blackwell's Approachability Theorem," Discussion Papers 1182, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:63:y:2008:i:1:p:227-258. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.