Advanced Search
MyIDEAS: Login to save this article or follow this journal

A dual description of the class of games with a population monotonic allocation scheme

Contents:

Author Info

  • Norde, Henk
  • Reijnierse, Hans

Abstract

A vector of balanced weights infers an inequality that games with a nonempty core obey.This paper gives a generalization of the notion `vector of balanced weights'.Herewith it provides necessary and sufficient conditions to determine whether a TU-game has a population monotonic allocation scheme or not. Furthermore it shows that every 4-person integer valued game with a population monotonic allocation scheme has an integer valued population monotonic allocation scheme and it gives an example of a 7-person integer valued game that has only non-integer valued population monotonic allocation schemes.

(This abstract was borrowed from another version of this item.)

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6WFW-473M7T3-6/2/129a80c88c7fec05252f7985f27c53d1
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Games and Economic Behavior.

Volume (Year): 41 (2002)
Issue (Month): 2 (November)
Pages: 322-343

as in new window
Handle: RePEc:eee:gamebe:v:41:y:2002:i:2:p:322-343

Contact details of provider:
Web page: http://www.elsevier.com/locate/inca/622836

Related research

Keywords:

Other versions of this item:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Moulin, H, 1990. "Cores and Large Cores When Population Varies," International Journal of Game Theory, Springer, vol. 19(2), pages 219-32.
  2. Sprumont, Yves, 1990. "Population monotonic allocation schemes for cooperative games with transferable utility," Games and Economic Behavior, Elsevier, vol. 2(4), pages 378-394, December.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Jesús Getán & Jesús Montes, 2010. "On cooperative games with large monotonic core," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer, vol. 18(2), pages 493-508, December.
  2. Barış Çiftçi & Peter Borm & Herbert Hamers, 2010. "Population monotonic path schemes for simple games," Theory and Decision, Springer, vol. 69(2), pages 205-218, August.
  3. Slikker, M. & Norde, H.W., 2008. "The Monoclus of a Coalitional Game," Discussion Paper 2008-6, Tilburg University, Center for Economic Research.
  4. Jesus Fco. Getan Olivan & Jesus Montes & Carlos Rafels Pallarola, 2006. "On the monotonic core," Working Papers in Economics 155, Universitat de Barcelona. Espai de Recerca en Economia.
  5. Jesus Getan & Jesus Montes, 2008. "A characterization of cooperative TU-games with large monotonic core," Working Papers in Economics 193, Universitat de Barcelona. Espai de Recerca en Economia.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:41:y:2002:i:2:p:322-343. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.