IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v73y2014icp302-310.html
   My bibliography  Save this article

Constructal design of cooling channels embedded in a ring-shaped heat-generating body

Author

Listed:
  • Salimpour, Mohammad Reza
  • Menbari, Amir

Abstract

This study outlines the fundamental problem of design and optimization of a tree-shaped flow structure for minimizing overall flow resistance. The flow paths are designed between many points located equidistantly on an internal circle centered at O and also many points that are located equidistantly on an external circle centered at O. The fluid enters points on internal circle and exits from external circle points. The global volume of channels is constrained. The study is performed on Y-shaped structures with suitable bifurcation. Obtaining the best geometric feature of tree-shaped structures for minimized overall flow resistance is purpose of design and optimization. The influence of several parameters on overall flow resistance is investigated such as number of ducts (n0) that reach the points on the internal circle, number of branching, internal radius of body disc and mass flow rate. It is demonstrated that the increase in complexity or the number of pairing levels leads to increase in overall flow resistance; however, the best performance is obtained by increasing the number of bifurcations or more number of branching levels. Moreover, the results show that the impact of mass flow rate on the global flow resistance is negligible.

Suggested Citation

  • Salimpour, Mohammad Reza & Menbari, Amir, 2014. "Constructal design of cooling channels embedded in a ring-shaped heat-generating body," Energy, Elsevier, vol. 73(C), pages 302-310.
  • Handle: RePEc:eee:energy:v:73:y:2014:i:c:p:302-310
    DOI: 10.1016/j.energy.2014.06.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214007208
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.06.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Huijun & Xie, Zhuojun & Chen, Lingen & Wu, Zhixiang & Xia, Shaojun, 2020. "Constructal design for supercharged boiler superheater," Energy, Elsevier, vol. 191(C).
    2. Salimpour, Mohammad Reza & Menbari, Amir, 2015. "Analytical optimization of constructal channels used for cooling a ring shaped body based on minimum flow and thermal resistances," Energy, Elsevier, vol. 81(C), pages 645-651.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:73:y:2014:i:c:p:302-310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.