IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i11p4313-4318.html
   My bibliography  Save this article

Sustainable development of energy systems for western China

Author

Listed:
  • Jin, Hongguang
  • Xu, Gang
  • Han, Wei
  • Gao, Lin
  • Li, Zheng

Abstract

The distribution of energy and industry in China is extremely uneven. The western region is rich in energy resources but relatively economically backward, while the eastern region, particularly, the southeast coastal area, is an industrially-developed area but is short of energy resources. On the basis of such a situation, this paper recommends the sustainable development of energy systems for the western region. The specific innovative energy systems adopted here can convert the western region's fossil fuels to alternative fuels and electricity with higher efficiency, lower investment cost, and less impact upon the environment. As one of such innovative energy systems, the MES (multi-functional energy system) can achieve 10–14% in the energy conservation ratio, 4–8% reduction of investment cost, and a 10–37% decrease of main pollutants. Moreover, its adoption will increase the income and accelerate the development of the energy industry in the western region, as well as meet the energy demand of the eastern region. The analysis in this paper presents a feasible energy road map for the rapid yet sustainable development of China's western region.

Suggested Citation

  • Jin, Hongguang & Xu, Gang & Han, Wei & Gao, Lin & Li, Zheng, 2010. "Sustainable development of energy systems for western China," Energy, Elsevier, vol. 35(11), pages 4313-4318.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:11:p:4313-4318
    DOI: 10.1016/j.energy.2009.04.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209001595
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.04.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin, Hongguang & Hong, Hui & Cai, Ruixian, 2006. "A chemically intercooled gas turbine cycle for recovery of low-temperature thermal energy," Energy, Elsevier, vol. 31(10), pages 1554-1566.
    2. Gao, Lin & Jin, Hongguang & Liu, Zelong & Zheng, Danxing, 2004. "Exergy analysis of coal-based polygeneration system for power and chemical production," Energy, Elsevier, vol. 29(12), pages 2359-2371.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jennifer M. Thomsen & Susan C. Caplow, 2017. "Defining success over time for large landscape conservation organizations," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 60(7), pages 1153-1172, July.
    2. Julien Chevallier, 2013. "At the crossroads: can China grow in a low-carbon way?," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 31, pages 666-681, Edward Elgar Publishing.
    3. Zhou, Wenji & Zhu, Bing & Chen, Dingjiang & Zhao, Fangxian & Fei, Weiyang, 2011. "Technoeconomic assessment of China’s indirect coal liquefaction projects with different CO2 capture alternatives," Energy, Elsevier, vol. 36(11), pages 6559-6566.
    4. Chung-Ling Chien, John & Lior, Noam, 2011. "Concentrating solar thermal power as a viable alternative in China's electricity supply," Energy Policy, Elsevier, vol. 39(12), pages 7622-7636.
    5. Wu, Zhibin & Xu, Jiuping, 2013. "Predicting and optimization of energy consumption using system dynamics-fuzzy multiple objective programming in world heritage areas," Energy, Elsevier, vol. 49(C), pages 19-31.
    6. Li, Yuqiang & Liao, Shengming & Rao, Zhenghua & Liu, Gang, 2014. "A dynamic assessment based feasibility study of concentrating solar power in China," Renewable Energy, Elsevier, vol. 69(C), pages 34-42.
    7. Dong, Cong & Huang, Guohe & Cai, Yanpeng & Li, Wei & Cheng, Guanhui, 2014. "Fuzzy interval programming for energy and environmental systems management under constraint-violation and energy-substitution effects: A case study for the City of Beijing," Energy Economics, Elsevier, vol. 46(C), pages 375-394.
    8. Huang, Yuanxi & Todd, Daniel & Zhang, Lei, 2011. "Capitalizing on energy supply: Western China's opportunity for development," Resources Policy, Elsevier, vol. 36(3), pages 227-237, September.
    9. Wei-Tzer Huang & Kai-Chao Yao & Chun-Ching Wu, 2014. "Using the Direct Search Method for Optimal Dispatch of Distributed Generation in a Medium-Voltage Microgrid," Energies, MDPI, vol. 7(12), pages 1-19, December.
    10. Ye Liu & Guohe Huang & Yanpeng Cai & Cong Dong, 2011. "An Inexact Mix-Integer Two-Stage Linear Programming Model for Supporting the Management of a Low-Carbon Energy System in China," Energies, MDPI, vol. 4(10), pages 1-30, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Wenjia & Hao, Yong & Wang, Hongsheng & Liu, Hao & Sui, Jun, 2017. "Efficient and low-carbon heat and power cogeneration with photovoltaics and thermochemical storage," Applied Energy, Elsevier, vol. 206(C), pages 1523-1531.
    2. Li, Wenjia & Hao, Yong, 2017. "Efficient solar power generation combining photovoltaics and mid-/low-temperature methanol thermochemistry," Applied Energy, Elsevier, vol. 202(C), pages 377-385.
    3. Lin, Hu & Jin, Hongguang & Gao, Lin & Zhang, Na, 2014. "A polygeneration system for methanol and power production based on coke oven gas and coal gas with CO2 recovery," Energy, Elsevier, vol. 74(C), pages 174-180.
    4. Cai, Ruixian & Jin, Hongguang & Gao, Lin & Hong, Hui, 2010. "Development of multifunctional energy systems (MESs)," Energy, Elsevier, vol. 35(11), pages 4375-4382.
    5. Li, Sheng & Sui, Jun & Jin, Hongguang & Zheng, Jianjiao, 2013. "Full chain energy performance for a combined cooling, heating and power system running with methanol and solar energy," Applied Energy, Elsevier, vol. 112(C), pages 673-681.
    6. Serra, Luis M. & Lozano, Miguel-Angel & Ramos, Jose & Ensinas, Adriano V. & Nebra, Silvia A., 2009. "Polygeneration and efficient use of natural resources," Energy, Elsevier, vol. 34(5), pages 575-586.
    7. Xiaosong Zhang & Sheng Li & Hongguang Jin, 2014. "A Polygeneration System Based on Multi-Input Chemical Looping Combustion," Energies, MDPI, vol. 7(11), pages 1-12, November.
    8. Wang, Zhifang & Zheng, Danxing & Jin, Hongguang, 2009. "Energy integration of acetylene and power polygeneration by flowrate-exergy diagram," Applied Energy, Elsevier, vol. 86(3), pages 372-379, March.
    9. Li, Sheng & Gao, Lin & Zhang, Xiaosong & Lin, Hu & Jin, Hongguang, 2012. "Evaluation of cost reduction potential for a coal based polygeneration system with CO2 capture," Energy, Elsevier, vol. 45(1), pages 101-106.
    10. Sanjay, & Prasad, Bishwa N., 2013. "Energy and exergy analysis of intercooled combustion-turbine based combined cycle power plant," Energy, Elsevier, vol. 59(C), pages 277-284.
    11. Narvaez, A. & Chadwick, D. & Kershenbaum, L., 2014. "Small-medium scale polygeneration systems: Methanol and power production," Applied Energy, Elsevier, vol. 113(C), pages 1109-1117.
    12. Qin, Shiyue & Chang, Shiyan, 2017. "Modeling, thermodynamic and techno-economic analysis of coke production process with waste heat recovery," Energy, Elsevier, vol. 141(C), pages 435-450.
    13. Turconi, Roberto & Tonini, Davide & Nielsen, Christian F.B. & Simonsen, Christian G. & Astrup, Thomas, 2014. "Environmental impacts of future low-carbon electricity systems: Detailed life cycle assessment of a Danish case study," Applied Energy, Elsevier, vol. 132(C), pages 66-73.
    14. Xu, Gang & Li, Le & Yang, Yongping & Tian, Longhu & Liu, Tong & Zhang, Kai, 2012. "A novel CO2 cryogenic liquefaction and separation system," Energy, Elsevier, vol. 42(1), pages 522-529.
    15. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Framework for advanced exergoeconomic performance analysis and optimization of an oil shale retorting process," Energy, Elsevier, vol. 109(C), pages 62-76.
    16. Li, Hongqiang & Hong, Hui & Jin, Hongguang & Cai, Ruixian, 2010. "Analysis of a feasible polygeneration system for power and methanol production taking natural gas and biomass as materials," Applied Energy, Elsevier, vol. 87(9), pages 2846-2853, September.
    17. Forman, Clemens & Gootz, Matthias & Wolfersdorf, Christian & Meyer, Bernd, 2017. "Coupling power generation with syngas-based chemical synthesis," Applied Energy, Elsevier, vol. 198(C), pages 180-191.
    18. Zhang, Guoqiang & Yang, Yongping & Jin, Hongguang & Xu, Gang & Zhang, Kai, 2013. "Proposed combined-cycle power system based on oxygen-blown coal partial gasification," Applied Energy, Elsevier, vol. 102(C), pages 735-745.
    19. Choudhary, Tushar & Sanjay,, 2017. "Thermodynamic assessment of SOFC-ICGT hybrid cycle: Energy analysis and entropy generation minimization," Energy, Elsevier, vol. 134(C), pages 1013-1028.
    20. Li, Yuanyuan & Zhang, Guoqiang & Yang, Yongping & Zhai, Dailong & Zhang, Kai & Xu, Gang, 2014. "Thermodynamic analysis of a coal-based polygeneration system with partial gasification," Energy, Elsevier, vol. 72(C), pages 201-214.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:11:p:4313-4318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.