IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v29y2004i9p1329-1338.html
   My bibliography  Save this article

Geological storage of CO2: What do we know, where are the gaps and what more needs to be done?

Author

Listed:
  • Gale, John

Abstract

If deep reductions in anthropogenic greenhouse gas emissions are to be achieved, the introduction of CO2 capture and storage in geological reservoirs is likely to be necessary. The technology would be deployed alongside other mitigation measures such as renewables, energy efficiency and fuel switching. Currently, research programmes on the geological storage of CO2 are underway in the United States, the European Union, Australia and Japan.

Suggested Citation

  • Gale, John, 2004. "Geological storage of CO2: What do we know, where are the gaps and what more needs to be done?," Energy, Elsevier, vol. 29(9), pages 1329-1338.
  • Handle: RePEc:eee:energy:v:29:y:2004:i:9:p:1329-1338
    DOI: 10.1016/j.energy.2004.03.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544204001501
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2004.03.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mandadige Samintha Anne Perera & Ashani Savinda Ranathunga & Pathegama Gamage Ranjith, 2016. "Effect of Coal Rank on Various Fluid Saturations Creating Mechanical Property Alterations Using Australian Coals," Energies, MDPI, vol. 9(6), pages 1-15, June.
    2. Raziperchikolaee, S. & Alvarado, V. & Yin, S., 2013. "Effect of hydraulic fracturing on long-term storage of CO2 in stimulated saline aquifers," Applied Energy, Elsevier, vol. 102(C), pages 1091-1104.
    3. Lai, N.Y.G. & Yap, E.H. & Lee, C.W., 2011. "Viability of CCS: A broad-based assessment for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3608-3616.
    4. Pengfei Lv & Yu Liu & Lanlan Jiang & Yongchen Song & Bohao Wu & Jiafei Zhao & Yi Zhang, 2016. "Experimental determination of wettability and heterogeneity effect on CO 2 distribution in porous media," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 6(3), pages 401-415, June.
    5. Zhang, Lisong & Zhang, Shiyan & Jiang, Weizhai & Wang, Zhiyuan & Li, Jing & Bian, Yinghui, 2018. "A mechanism of fluid exchange associated to CO2 leakage along activated fault during geologic storage," Energy, Elsevier, vol. 165(PB), pages 1178-1190.
    6. Wang, Jinkai & Feng, Xiaoyong & Wanyan, Qiqi & Zhao, Kai & Wang, Ziji & Pei, Gen & Xie, Jun & Tian, Bo, 2022. "Hysteresis effect of three-phase fluids in the high-intensity injection–production process of sandstone underground gas storages," Energy, Elsevier, vol. 242(C).
    7. Afshin Tatar & Amin Shokrollahi & Moonyong Lee & Tomoaki Kashiwao & Alireza Bahadori, 2015. "Prediction of supercritical CO 2 /brine relative permeability in sedimentary basins during carbon dioxide sequestration," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(6), pages 756-771, December.
    8. Erlei Su & Yunpei Liang & Lei Li & Quanle Zou & Fanfan Niu, 2018. "Laboratory Study on Changes in the Pore Structures and Gas Desorption Properties of Intact and Tectonic Coals after Supercritical CO 2 Treatment: Implications for Coalbed Methane Recovery," Energies, MDPI, vol. 11(12), pages 1-13, December.
    9. Nasvi, M.C.M. & Ranjith, P.G. & Sanjayan, J. & Haque, A., 2013. "Sub- and super-critical carbon dioxide permeability of wellbore materials under geological sequestration conditions: An experimental study," Energy, Elsevier, vol. 54(C), pages 231-239.
    10. Tianran Ma & Jonny Rutqvist & Weiqun Liu & Li Zhu & Kunhwi Kim, 2017. "Modeling of CO 2 sequestration in coal seams: Role of CO 2 ‐induced coal softening on injectivity, storage efficiency and caprock deformation," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(3), pages 562-578, June.
    11. Perera, M.S.A. & Ranjith, P.G. & Choi, S.K. & Airey, D., 2011. "The effects of sub-critical and super-critical carbon dioxide adsorption-induced coal matrix swelling on the permeability of naturally fractured black coal," Energy, Elsevier, vol. 36(11), pages 6442-6450.
    12. Ricci, Elena Claire & Bosetti, Valentina & Baker, Erin & Jenni, Karen E., 2014. "From Expert Elicitations to Integrated Assessment: Future Prospects of Carbon Capture Technologies," Climate Change and Sustainable Development 172451, Fondazione Eni Enrico Mattei (FEEM).
    13. Griffin, Paul A. & Jaffe, Amy Myers & Lont, David H. & Dominguez-Faus, Rosa, 2015. "Science and the stock market: Investors' recognition of unburnable carbon," Energy Economics, Elsevier, vol. 52(PA), pages 1-12.
    14. Shafaei, Mohammad Javad & Abedi, Jalal & Hassanzadeh, Hassan & Chen, Zhangxin, 2012. "Reverse gas-lift technology for CO2 storage into deep saline aquifers," Energy, Elsevier, vol. 45(1), pages 840-849.
    15. Samin Raziperchikolaee & Vivek Singh & Mark Kelley, 2022. "Quantifying the impact of effective stress on changes in elastic wave velocities due to CO2 injection into a depleted carbonate reef," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 12(1), pages 35-47, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:29:y:2004:i:9:p:1329-1338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.