IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v17y1992i7p689-696.html
   My bibliography  Save this article

Interfuel substitution and decomposition of changes in industrial energy consumption

Author

Listed:
  • Liu, X.Q.
  • Ang, B.W.
  • Ong, H.L.

Abstract

Several recent studies have dealt with the methodology of decomposing the change in industrial energy consumption between two years into three separate components. Each component is associated with one of the following three effects: changes in production level, product-mix, and sectoral energy intensity. The component attributable to sectoral energy intensity gives the overall effect of interfuel substitution, changes in the physical efficiencies of fuel use, and factors which are unaccounted for. In this paper, we present a method for isolating the effect of interfuel substitution such that the change in energy consumption is decomposed into four separate components. With this extension, the mechanisms of change in energy use in industry can be studied in depth and with improved understanding. We have applied our method to data of Taiwan and the results are presented. We also discuss the assumptions made and some practical considerations in the use of our method.

Suggested Citation

  • Liu, X.Q. & Ang, B.W. & Ong, H.L., 1992. "Interfuel substitution and decomposition of changes in industrial energy consumption," Energy, Elsevier, vol. 17(7), pages 689-696.
  • Handle: RePEc:eee:energy:v:17:y:1992:i:7:p:689-696
    DOI: 10.1016/0360-5442(92)90076-C
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/036054429290076C
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0360-5442(92)90076-C?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patterson, Murray G, 1996. "What is energy efficiency? : Concepts, indicators and methodological issues," Energy Policy, Elsevier, vol. 24(5), pages 377-390, May.
    2. Sandeep Kumar Kujur, 2018. "Impact of Technological Change on Employment: Evidence from the Organised Manufacturing Industry in India," The Indian Journal of Labour Economics, Springer;The Indian Society of Labour Economics (ISLE), vol. 61(2), pages 339-376, June.
    3. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Multilevel LMDI decomposition of changes in aggregate energy consumption. A cross country analysis in the EU-27," Energy Policy, Elsevier, vol. 68(C), pages 576-584.
    4. Velasco-Fernández, Raúl & Dunlop, Tessa & Giampietro, Mario, 2020. "Fallacies of energy efficiency indicators: Recognizing the complexity of the metabolic pattern of the economy," Energy Policy, Elsevier, vol. 137(C).
    5. Velasco-Fernández, Raúl & Giampietro, Mario & Bukkens, Sandra G.F., 2018. "Analyzing the energy performance of manufacturing across levels using the end-use matrix," Energy, Elsevier, vol. 161(C), pages 559-572.
    6. Liu, Na & Ang, B.W., 2007. "Factors shaping aggregate energy intensity trend for industry: Energy intensity versus product mix," Energy Economics, Elsevier, vol. 29(4), pages 609-635, July.
    7. Xu, Xianshuo & Zhao, Tao & Liu, Nan & Kang, Jidong, 2014. "Changes of energy-related GHG emissions in China: An empirical analysis from sectoral perspective," Applied Energy, Elsevier, vol. 132(C), pages 298-307.
    8. Schipper, Lee & Ting, Michael & Khrushch, Marta & Golove, William, 1997. "The evolution of carbon dioxide emissions from energy use in industrialized countries: an end-use analysis," Energy Policy, Elsevier, vol. 25(7-9), pages 651-672.
    9. Shahiduzzaman, Md. & Alam, Khorshed, 2013. "Changes in energy efficiency in Australia: A decomposition of aggregate energy intensity using logarithmic mean Divisia approach," Energy Policy, Elsevier, vol. 56(C), pages 341-351.
    10. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    11. Khademvatani, Asgar & Gordon, Daniel V., 2013. "A marginal measure of energy efficiency: The shadow value," Energy Economics, Elsevier, vol. 38(C), pages 153-159.
    12. Qu, Chenyao & Shao, Jun & Shi, Zhenkai, 2020. "Does financial agglomeration promote the increase of energy efficiency in China?," Energy Policy, Elsevier, vol. 146(C).
    13. Rongrong Li & Rui Jiang, 2019. "Is carbon emission decline caused by economic decline? Empirical evidence from Russia," Energy & Environment, , vol. 30(4), pages 672-684, June.
    14. He, Yongda & Lin, Boqiang, 2019. "Heterogeneity and asymmetric effects in energy resources allocation of the manufacturing sectors in China," Energy, Elsevier, vol. 170(C), pages 1019-1035.
    15. Iwona Bąk & Małgorzata Tarczyńska-Łuniewska & Anna Barwińska-Małajowicz & Paweł Hydzik & Dariusz Kusz, 2022. "Is Energy Use in the EU Countries Moving toward Sustainable Development?," Energies, MDPI, vol. 15(16), pages 1-26, August.
    16. Ebohon, Obas John & Ikeme, Anthony Jekwu, 2006. "Decomposition analysis of CO2 emission intensity between oil-producing and non-oil-producing sub-Saharan African countries," Energy Policy, Elsevier, vol. 34(18), pages 3599-3611, December.
    17. Wang, Qunwei & Zhao, Zengyao & Zhou, Peng & Zhou, Dequn, 2013. "Energy efficiency and production technology heterogeneity in China: A meta-frontier DEA approach," Economic Modelling, Elsevier, vol. 35(C), pages 283-289.
    18. Ang, B. W., 1995. "Multilevel decomposition of industrial energy consumption," Energy Economics, Elsevier, vol. 17(1), pages 39-51, January.
    19. Li, Ming-Jia & Tao, Wen-Quan, 2017. "Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry," Applied Energy, Elsevier, vol. 187(C), pages 203-215.
    20. Liu, Gengyuan & Hao, Yan & Zhou, Yun & Yang, Zhifeng & Zhang, Yan & Su, Meirong, 2016. "China's low-carbon industrial transformation assessment based on Logarithmic Mean Divisia Index model," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 156-170.
    21. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:17:y:1992:i:7:p:689-696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.