IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v69y2014icp57-72.html
   My bibliography  Save this article

Using the Homes Energy Efficiency Database as a research resource for residential insulation improvements

Author

Listed:
  • Foulds, Chris
  • Powell, Jane

Abstract

In devising viable energy efficiency policies that can reduce the greenhouse gas emissions of existing dwellings (e.g. UK׳s Green Deal), data are required on current insulation levels and its influences. One such data source is the seldom used UK Energy Saving Trust׳s Homes Energy Efficiency Database (HEED), which this paper investigates using Norfolk UK local authorities as a case study. The HEED׳s reactive and longitudinal data collection strategies contribute to underlying biases, which is the likely reasoning for its differences with the English Housing Survey and UK 2001 Census. These differences had a cascading effect in that they manifested themselves in the indicative financial and carbon assessments undertaken. Similarly, sampling concerns also implicated correlations surrounding influences of current dwelling insulation levels. Providing one is transparent about potential biases and data concerns, the HEED can play a substantial role in guiding policy decisions and understanding dwelling stock characteristics (e.g. what makes dwellings ‘Hard to Treat׳). In particular, its vast (national) geographic coverage yet high resolution enables local context to be explored: a factor that this study shows to significantly shape insulation levels.

Suggested Citation

  • Foulds, Chris & Powell, Jane, 2014. "Using the Homes Energy Efficiency Database as a research resource for residential insulation improvements," Energy Policy, Elsevier, vol. 69(C), pages 57-72.
  • Handle: RePEc:eee:enepol:v:69:y:2014:i:c:p:57-72
    DOI: 10.1016/j.enpol.2014.01.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421514000202
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2014.01.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wyatt, Peter, 2013. "A dwelling-level investigation into the physical and socio-economic drivers of domestic energy consumption in England," Energy Policy, Elsevier, vol. 60(C), pages 540-549.
    2. Kusiak, Andrew & Li, Mingyang & Tang, Fan, 2010. "Modeling and optimization of HVAC energy consumption," Applied Energy, Elsevier, vol. 87(10), pages 3092-3102, October.
    3. Ma, Hengyun & Oxley, Les & Gibson, John & Li, Wen, 2010. "A survey of China's renewable energy economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 438-445, January.
    4. Su, Jack H. & Hui, Simone S. & Tsen, Kevin H., 2010. "China Rationalizes Its Renewable Energy Policy," The Electricity Journal, Elsevier, vol. 23(3), pages 26-34, April.
    5. Simon Dresner and Paul Ekins, 2004. "Economic Instruments for a Socially Neutral Nationl Home Energy Efficiency Programme," PSI Research Discussion Series 18, Policy Studies Institute, UK.
    6. Hamilton, Ian G. & Steadman, Philip J. & Bruhns, Harry & Summerfield, Alex J. & Lowe, Robert, 2013. "Energy efficiency in the British housing stock: Energy demand and the Homes Energy Efficiency Database," Energy Policy, Elsevier, vol. 60(C), pages 462-480.
    7. Ravetz, Joe, 2008. "State of the stock--What do we know about existing buildings and their future prospects?," Energy Policy, Elsevier, vol. 36(12), pages 4462-4470, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fouquet, Roger, 2016. "Lessons from energy history for climate policy: technological change, demand and economic development," LSE Research Online Documents on Economics 67785, London School of Economics and Political Science, LSE Library.
    2. Roger Fouquet, 2015. "Lessons from energy history for climate policy," GRI Working Papers 209, Grantham Research Institute on Climate Change and the Environment.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jones, Rory V. & Fuertes, Alba & Lomas, Kevin J., 2015. "The socio-economic, dwelling and appliance related factors affecting electricity consumption in domestic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 901-917.
    2. Saunders, R.W. & Gross, R.J.K. & Wade, J., 2012. "Can premium tariffs for micro-generation and small scale renewable heat help the fuel poor, and if so, how? Case studies of innovative finance for community energy schemes in the UK," Energy Policy, Elsevier, vol. 42(C), pages 78-88.
    3. Felix Groba & Jing Cao, 2015. "Chinese Renewable Energy Technology Exports: The Role of Policy, Innovation and Markets," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 60(2), pages 243-283, February.
    4. Pöstges, Arne & Bucksteeg, Michael & Ruhnau, Oliver & Böttger, Diana & Haller, Markus & Künle, Eglantine & Ritter, David & Schmitz, Richard & Wiedmann, Michael, 2022. "Phasing out coal: An impact analysis comparing five large-scale electricity market models," Applied Energy, Elsevier, vol. 319(C).
    5. Alice Owen & Alison Heppenstall, 2020. "Making the case for simulation: Unlocking carbon reduction through simulation of individual ‘middle actor’ behaviour," Environment and Planning B, , vol. 47(3), pages 457-472, March.
    6. Porse, Erik & Fournier, Eric & Cheng, Dan & Hirashiki, Claire & Gustafson, Hannah & Federico, Felicia & Pincetl, Stephanie, 2020. "Net solar generation potential from urban rooftops in Los Angeles," Energy Policy, Elsevier, vol. 142(C).
    7. Roberts, Mike B. & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2019. "Characterisation of Australian apartment electricity demand and its implications for low-carbon cities," Energy, Elsevier, vol. 180(C), pages 242-257.
    8. Cansino, José M. & Dugo, Víctor & Gálvez-Ruiz, David & Román-Collado, Rocío, 2023. "What drove electricity consumption in the residential sector during the SARS-CoV-2 confinement? A special focus on university students in southern Spain," Energy, Elsevier, vol. 262(PB).
    9. Hache, Emmanuel & Leboullenger, Déborah & Mignon, Valérie, 2017. "Beyond average energy consumption in the French residential housing market: A household classification approach," Energy Policy, Elsevier, vol. 107(C), pages 82-95.
    10. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    11. Rongjiang Ma & Xianlin Wang & Ming Shan & Nanyang Yu & Shen Yang, 2020. "Recognition of Variable-Speed Equipment in an Air-Conditioning System Using Numerical Analysis of Energy-Consumption Data," Energies, MDPI, vol. 13(18), pages 1-14, September.
    12. Zeng, Ming & Li, Chen & Zhou, Lisha, 2013. "Progress and prospective on the police system of renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 36-44.
    13. Kazmi, Hussain & Suykens, Johan & Balint, Attila & Driesen, Johan, 2019. "Multi-agent reinforcement learning for modeling and control of thermostatically controlled loads," Applied Energy, Elsevier, vol. 238(C), pages 1022-1035.
    14. Cui, Can & Zhang, Xin & Cai, Wenjian, 2020. "An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model," Applied Energy, Elsevier, vol. 264(C).
    15. Leila Luttenberger Marić & Hrvoje Keko & Marko Delimar, 2022. "The Role of Local Aggregator in Delivering Energy Savings to Household Consumers," Energies, MDPI, vol. 15(8), pages 1-27, April.
    16. Lindner, Soeren & Liu, Zhu & Guan, Dabo & Geng, Yong & Li, Xin, 2013. "CO2 emissions from China’s power sector at the provincial level: Consumption versus production perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 164-172.
    17. Molina-Solana, Miguel & Ros, María & Ruiz, M. Dolores & Gómez-Romero, Juan & Martin-Bautista, M.J., 2017. "Data science for building energy management: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 598-609.
    18. Kusiak, Andrew & Xu, Guanglin & Tang, Fan, 2011. "Optimization of an HVAC system with a strength multi-objective particle-swarm algorithm," Energy, Elsevier, vol. 36(10), pages 5935-5943.
    19. Salomé Bakaloglou and Dorothée Charlier, 2019. "Energy Consumption in the French Residential Sector: How Much do Individual Preferences Matter?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    20. Chen, Qun & Wang, Yi-Fei & Xu, Yun-Chao, 2015. "A thermal resistance-based method for the optimal design of central variable water/air volume chiller systems," Applied Energy, Elsevier, vol. 139(C), pages 119-130.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:69:y:2014:i:c:p:57-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.