IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v67y2014icp56-67.html
   My bibliography  Save this article

Perspectives of energy efficient technologies penetration in the Greek domestic sector, through the analysis of Energy Performance Certificates

Author

Listed:
  • Gelegenis, J.
  • Diakoulaki, D.
  • Lampropoulou, H.
  • Giannakidis, G.
  • Samarakou, M.
  • Plytas, N.

Abstract

The building sector in Greece presents a huge energy saving potential, the largest part of which is remaining unexploited. The recently enacted legislation for the energy performance of buildings, in combination with the financial support provided by funding programmes to low income families is expected to significantly boost the deployment of energy efficient technologies in the Greek domestic sector. The exploitation of these legal and financial instruments follows a formalised process of energy audits, resulting in buildings classification and in the submission of Energy Performance Certificates (EPCs) including suggestions to improve the dwellings' energy performance. The paper aims at an ex-ante evaluation of the market trends revealed by EPCs in Greece, in order to identify the perspectives of individual technologies and to assess the degree to which the certification procedure helps in improving the energy performance of buildings. The results indicate a strong trend towards less cost-effective technologies, revealing a sub-optimal allocation of financial resources and putting into risk the path towards the achievement of EU targets for 2020.

Suggested Citation

  • Gelegenis, J. & Diakoulaki, D. & Lampropoulou, H. & Giannakidis, G. & Samarakou, M. & Plytas, N., 2014. "Perspectives of energy efficient technologies penetration in the Greek domestic sector, through the analysis of Energy Performance Certificates," Energy Policy, Elsevier, vol. 67(C), pages 56-67.
  • Handle: RePEc:eee:enepol:v:67:y:2014:i:c:p:56-67
    DOI: 10.1016/j.enpol.2013.09.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513009750
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.09.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nair, Gireesh & Gustavsson, Leif & Mahapatra, Krushna, 2010. "Factors influencing energy efficiency investments in existing Swedish residential buildings," Energy Policy, Elsevier, vol. 38(6), pages 2956-2963, June.
    2. Nikolaidis, Yiannis & Pilavachi, Petros A. & Chletsis, Alexandros, 2009. "Economic evaluation of energy saving measures in a common type of Greek building," Applied Energy, Elsevier, vol. 86(12), pages 2550-2559, December.
    3. Panayi, Panayiotis, 2004. "Prioritising energy investments in new dwellings constructed in Cyprus," Renewable Energy, Elsevier, vol. 29(5), pages 789-819.
    4. Karteris, M. & Papadopoulos, A.M., 2013. "Legislative framework for photovoltaics in Greece: A review of the sector's development," Energy Policy, Elsevier, vol. 55(C), pages 296-304.
    5. Artmann, N. & Manz, H. & Heiselberg, P., 2007. "Climatic potential for passive cooling of buildings by night-time ventilation in Europe," Applied Energy, Elsevier, vol. 84(2), pages 187-201, February.
    6. Chasapis, D. & Drosou, V. & Papamechael, I. & Aidonis, A. & Blanchard, R., 2008. "Monitoring and operational results of a hybrid solar-biomass heating system," Renewable Energy, Elsevier, vol. 33(8), pages 1759-1767.
    7. Dascalaki, E.G. & Balaras, C.A. & Gaglia, A.G. & Droutsa, K.G. & Kontoyiannidis, S., 2012. "Energy performance of buildings—EPBD in Greece," Energy Policy, Elsevier, vol. 45(C), pages 469-477.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niki-Artemis Spyridaki & Anastasia Ioannou & Alexandros Flamos, 2016. "How Can the Context Affect Policy Decision-Making: The Case of Climate Change Mitigation Policies in the Greek Building Sector," Energies, MDPI, vol. 9(4), pages 1-22, April.
    2. Droutsa, Kalliopi G. & Kontoyiannidis, Simon & Dascalaki, Elena G. & Balaras, Constantinos A., 2016. "Mapping the energy performance of hellenic residential buildings from EPC (energy performance certificate) data," Energy, Elsevier, vol. 98(C), pages 284-295.
    3. Spyridaki, Niki-Artemis & Stavrakas, Vassilis & Dendramis, Yiannis & Flamos, Alexandros, 2020. "Understanding technology ownership to reveal adoption trends for energy efficiency measures in the Greek residential sector," Energy Policy, Elsevier, vol. 140(C).
    4. Felipe Encinas & Carlos Aguirre & Carlos Marmolejo-Duarte, 2018. "Sustainability Attributes in Real Estate Development: Private Perspectives on Advancing Energy Regulation in a Liberalized Market," Sustainability, MDPI, vol. 10(1), pages 1-26, January.
    5. Pasichnyi, Oleksii & Wallin, Jörgen & Levihn, Fabian & Shahrokni, Hossein & Kordas, Olga, 2019. "Energy performance certificates — New opportunities for data-enabled urban energy policy instruments?," Energy Policy, Elsevier, vol. 127(C), pages 486-499.
    6. Felipe Encinas & Carlos Marmolejo-Duarte & Carlos Aguirre-Nuñez & Francisco Vergara-Perucich, 2020. "When Residential Energy Labeling Becomes Irrelevant: Sustainability vs. Profitability in the Liberalized Chilean Property Market," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    7. Gibbons, Laurence & Javed, Saqib, 2022. "A review of HVAC solution-sets and energy performace of nearly zero-energy multi-story apartment buildings in Nordic climates by statistical analysis of environmental performance certificates and lite," Energy, Elsevier, vol. 238(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Spyridaki, Niki-Artemis & Stavrakas, Vassilis & Dendramis, Yiannis & Flamos, Alexandros, 2020. "Understanding technology ownership to reveal adoption trends for energy efficiency measures in the Greek residential sector," Energy Policy, Elsevier, vol. 140(C).
    2. Spyridon Karytsas & Eleni Theodoropoulou, 2023. "Awareness and Utilization of Incentive Programs for Household Energy-Saving Renovations: Empirical Findings from Greece," Sustainability, MDPI, vol. 15(18), pages 1-23, September.
    3. Constantinos A. Balaras & Andreas I. Theodoropoulos & Elena G. Dascalaki, 2023. "Geographic Information Systems for Facilitating Audits of the Urban Built Environment," Energies, MDPI, vol. 16(11), pages 1-26, May.
    4. Montazeri, H. & Montazeri, F., 2018. "CFD simulation of cross-ventilation in buildings using rooftop wind-catchers: Impact of outlet openings," Renewable Energy, Elsevier, vol. 118(C), pages 502-520.
    5. Shoaib Azizi & Gireesh Nair & Thomas Olofsson, 2020. "Adoption of Energy Efficiency Measures in Renovation of Single-Family Houses: A Comparative Approach," Energies, MDPI, vol. 13(22), pages 1-16, November.
    6. Persson, Tomas & Wiertzema, Holger & Win, Kaung Myat & Bales, Chris, 2019. "Modelling of dynamics and stratification effects in pellet boilers," Renewable Energy, Elsevier, vol. 134(C), pages 769-782.
    7. Guariso, Giorgio & Sangiorgio, Matteo, 2019. "Multi-objective planning of building stock renovation," Energy Policy, Elsevier, vol. 130(C), pages 101-110.
    8. Fischbacher, Urs & Schudy, Simeon & Teyssier, Sabrina, 2021. "Heterogeneous preferences and investments in energy saving measures," Resource and Energy Economics, Elsevier, vol. 63(C).
    9. Hyunjoo Lee & Misuk Lee & Sesil Lim, 2018. "Do Consumers Care about the Energy Efficiency of Buildings? Understanding Residential Choice Based on Energy Performance Certificates," Sustainability, MDPI, vol. 10(11), pages 1-18, November.
    10. Schlomann, Barbara & Schleich, Joachim, 2015. "Adoption of low-cost energy efficiency measures in the tertiary sector—An empirical analysis based on energy survey data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1127-1133.
    11. Axaopoulos, Ioannis & Axaopoulos, Petros & Gelegenis, John, 2014. "Optimum insulation thickness for external walls on different orientations considering the speed and direction of the wind," Applied Energy, Elsevier, vol. 117(C), pages 167-175.
    12. Schleich, Joachim & Faure, Corinne & Meissner, Thomas, 2021. "Adoption of retrofit measures among homeowners in EU countries: The effects of access to capital and debt aversion," Energy Policy, Elsevier, vol. 149(C).
    13. Zahedi, Ali Reza & Mirnezami, Seyed Abolfazl, 2020. "Experimental analysis of biomass to biodiesel conversion using a novel renewable combined cycle system," Renewable Energy, Elsevier, vol. 162(C), pages 1177-1194.
    14. Kalantzis, Fotios & Revoltella, Debora, 2019. "How energy audits promote SMEs' energy efficiency investment," EIB Working Papers 2019/02, European Investment Bank (EIB).
    15. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.
    16. Federica Daniele & Alessandra Pasquini & Stefano Clò & Enza Maltese, 2022. "Unburdening regulation: the impact of regulatory simplification on photovoltaic adoption in Italy," Temi di discussione (Economic working papers) 1387, Bank of Italy, Economic Research and International Relations Area.
    17. Häckel, Björn & Pfosser, Stefan & Tränkler, Timm, 2017. "Explaining the energy efficiency gap - Expected Utility Theory versus Cumulative Prospect Theory," Energy Policy, Elsevier, vol. 111(C), pages 414-426.
    18. Chen, Xiaoming & Zhang, Quan & Zhai, Zhiqiang John & Ma, Xiaowei, 2019. "Potential of ventilation systems with thermal energy storage using PCMs applied to air conditioned buildings," Renewable Energy, Elsevier, vol. 138(C), pages 39-53.
    19. Heutel, Garth, 2019. "Prospect theory and energy efficiency," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 236-254.
    20. Schäuble, Dominik & Marian, Adela & Cremonese, Lorenzo, 2020. "Conditions for a cost-effective application of smart thermostat systems in residential buildings," Applied Energy, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:67:y:2014:i:c:p:56-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.