IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v66y2014icp104-114.html
   My bibliography  Save this article

How to achieve optimal and sustainable use of the subsurface for Aquifer Thermal Energy Storage

Author

Listed:
  • Bloemendal, Martin
  • Olsthoorn, Theo
  • Boons, Frank

Abstract

A heat pump combined with Aquifer Thermal Energy Storage (ATES) has high potential in efficiently and sustainably providing thermal energy for space heating and cooling. This makes the subsurface, including its groundwater, of crucial importance for primary energy savings. The regulation of ATES systems is similar in many countries around the world. This paper seeks solutions for the institutional hindrances to the diffusion of ATES. The use of aquifers by individual ATES systems can be optimized to maximize their efficiency on the one hand, and to optimize the performance of the regional subsurface for energy storage on the other. The application of ATES in an aquifer has similar properties as other common resource pool problems. Only with detailed information and feedback about the actual subsurface status, a network of ATES systems can work towards an optimum for both the subsurface and buildings, instead of striving for a local optimum for individual buildings. Future governance of the subsurface may include the self-organization or self-governance. For that the ATES systems need a complementary framework; interpretation of interaction, feedback and adaptable and dynamic control interpretations are the key elements for the optimal and sustainable use of the subsurface.

Suggested Citation

  • Bloemendal, Martin & Olsthoorn, Theo & Boons, Frank, 2014. "How to achieve optimal and sustainable use of the subsurface for Aquifer Thermal Energy Storage," Energy Policy, Elsevier, vol. 66(C), pages 104-114.
  • Handle: RePEc:eee:enepol:v:66:y:2014:i:c:p:104-114
    DOI: 10.1016/j.enpol.2013.11.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513011415
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.11.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elinor Ostrom, 2010. "Beyond Markets and States: Polycentric Governance of Complex Economic Systems," American Economic Review, American Economic Association, vol. 100(3), pages 641-672, June.
    2. Hähnlein, Stefanie & Bayer, Peter & Ferguson, Grant & Blum, Philipp, 2013. "Sustainability and policy for the thermal use of shallow geothermal energy," Energy Policy, Elsevier, vol. 59(C), pages 914-925.
    3. Yang, Wei & Zhou, Jin & Xu, Wei & Zhang, Guoqiang, 2010. "Current status of ground-source heat pumps in China," Energy Policy, Elsevier, vol. 38(1), pages 323-332, January.
    4. Grubler, Arnulf, 2012. "Energy transitions research: Insights and cautionary tales," Energy Policy, Elsevier, vol. 50(C), pages 8-16.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manon Bulté & Thierry Duren & Olivier Bouhon & Estelle Petitclerc & Mathieu Agniel & Alain Dassargues, 2021. "Numerical Modeling of the Interference of Thermally Unbalanced Aquifer Thermal Energy Storage Systems in Brussels (Belgium)," Energies, MDPI, vol. 14(19), pages 1-17, September.
    2. Stemmle, Ruben & Blum, Philipp & Schüppler, Simon & Fleuchaus, Paul & Limoges, Melissa & Bayer, Peter & Menberg, Kathrin, 2021. "Environmental impacts of aquifer thermal energy storage (ATES)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Bloemendal, Martin & Jaxa-Rozen, Marc & Olsthoorn, Theo, 2018. "Methods for planning of ATES systems," Applied Energy, Elsevier, vol. 216(C), pages 534-557.
    4. Walker, Shalika & Katic, Katarina & Maassen, Wim & Zeiler, Wim, 2019. "Multi-criteria feasibility assessment of cost-optimized alternatives to comply with heating demand of existing office buildings – A case study," Energy, Elsevier, vol. 187(C).
    5. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Pophillat, William & Attard, Guillaume & Bayer, Peter & Hecht-Méndez, Jozsef & Blum, Philipp, 2020. "Analytical solutions for predicting thermal plumes of groundwater heat pump systems," Renewable Energy, Elsevier, vol. 147(P2), pages 2696-2707.
    7. Marco Pellegrini & Augusto Bianchini, 2018. "The Innovative Concept of Cold District Heating Networks: A Literature Review," Energies, MDPI, vol. 11(1), pages 1-16, January.
    8. Jewon Oh & Daisuke Sumiyoshi & Masatoshi Nishioka & Hyunbae Kim, 2021. "Efficient Operation Method of Aquifer Thermal Energy Storage System Using Demand Response," Energies, MDPI, vol. 14(11), pages 1-18, May.
    9. Lu, Hongwei & Tian, Peipei & Guan, Yanlong & Yu, Sen, 2019. "Integrated suitability, vulnerability and sustainability indicators for assessing the global potential of aquifer thermal energy storage," Applied Energy, Elsevier, vol. 239(C), pages 747-756.
    10. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    11. Alcaraz, Mar & García-Gil, Alejandro & Vázquez-Suñé, Enric & Velasco, Violeta, 2016. "Use rights markets for shallow geothermal energy management," Applied Energy, Elsevier, vol. 172(C), pages 34-46.
    12. Bozkaya, Basar & Zeiler, Wim, 2020. "The energy efficient use of an air handling unit for balancing an aquifer thermal energy storage system," Renewable Energy, Elsevier, vol. 146(C), pages 1932-1942.
    13. Rostampour, Vahab & Jaxa-Rozen, Marc & Bloemendal, Martin & Kwakkel, Jan & Keviczky, Tamás, 2019. "Aquifer Thermal Energy Storage (ATES) smart grids: Large-scale seasonal energy storage as a distributed energy management solution," Applied Energy, Elsevier, vol. 242(C), pages 624-639.
    14. Fleuchaus, Paul & Schüppler, Simon & Godschalk, Bas & Bakema, Guido & Blum, Philipp, 2020. "Performance analysis of Aquifer Thermal Energy Storage (ATES)," Renewable Energy, Elsevier, vol. 146(C), pages 1536-1548.
    15. Daniilidis, Alexandros & Mindel, Julian E. & De Oliveira Filho, Fleury & Guglielmetti, Luca, 2022. "Techno-economic assessment and operational CO2 emissions of High-Temperature Aquifer Thermal Energy Storage (HT-ATES) using demand-driven and subsurface-constrained dimensioning," Energy, Elsevier, vol. 249(C).
    16. Beernink, Stijn & Bloemendal, Martin & Kleinlugtenbelt, Rob & Hartog, Niels, 2022. "Maximizing the use of aquifer thermal energy storage systems in urban areas: effects on individual system primary energy use and overall GHG emissions," Applied Energy, Elsevier, vol. 311(C).
    17. Lu, Hongwei & Tian, Peipei & He, Li, 2019. "Evaluating the global potential of aquifer thermal energy storage and determining the potential worldwide hotspots driven by socio-economic, geo-hydrologic and climatic conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 788-796.
    18. De Schepper, Guillaume & Paulus, Claire & Bolly, Pierre-Yves & Hermans, Thomas & Lesparre, Nolwenn & Robert, Tanguy, 2019. "Assessment of short-term aquifer thermal energy storage for demand-side management perspectives: Experimental and numerical developments," Applied Energy, Elsevier, vol. 242(C), pages 534-546.
    19. Willems, C.J.L. & M. Nick, H., 2019. "Towards optimisation of geothermal heat recovery: An example from the West Netherlands Basin," Applied Energy, Elsevier, vol. 247(C), pages 582-593.
    20. Fleuchaus, Paul & Godschalk, Bas & Stober, Ingrid & Blum, Philipp, 2018. "Worldwide application of aquifer thermal energy storage – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 861-876.
    21. Taha Sezer & Abubakar Kawuwa Sani & Rao Martand Singh & Liang Cui, 2023. "Numerical Investigation and Optimization of a District-Scale Groundwater Heat Pump System," Energies, MDPI, vol. 16(20), pages 1-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sovacool, Benjamin K. & Martiskainen, Mari, 2020. "Hot transformations: Governing rapid and deep household heating transitions in China, Denmark, Finland and the United Kingdom," Energy Policy, Elsevier, vol. 139(C).
    2. Eloi Laurent & Jean Jouzel, 2018. "The Well-being Transition: Measuring what counts to protect what matters," Sciences Po publications 35, Sciences Po.
    3. Moeliono, Moira & Brockhaus, Maria & Gallemore, Caleb & Dwisatrio, Bimo & Maharani, Cynthia D. & Muharrom, Efrian & Pham, Thuy Thu, 2020. "REDD+ in Indonesia: A new mode of governance or just another project?," Forest Policy and Economics, Elsevier, vol. 121(C).
    4. Górriz-Mifsud, Elena & Olza Donazar, Luis & Montero Eseverri, Eduardo & Marini Govigli, Valentino, 2019. "The challenges of coordinating forest owners for joint management," Forest Policy and Economics, Elsevier, vol. 99(C), pages 100-109.
    5. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    6. Atanu Ghoshray & Issam Malki, 2021. "The share of the global energy mix: Signs of convergence?," Bulletin of Economic Research, Wiley Blackwell, vol. 73(1), pages 34-50, January.
    7. McCloskey Deirdre Nansen, 2018. "The Two Movements in Economic Thought, 1700–2000: Empty Economic Boxes Revisited," Man and the Economy, De Gruyter, vol. 5(2), pages 1-20, December.
    8. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2015. "Ground energy balance for borehole heat exchangers: Vertical fluxes, groundwater and storage," Renewable Energy, Elsevier, vol. 83(C), pages 1341-1351.
    9. Martin G. Kocher & Fangfang Tan & Jing Yu, 2018. "Providing Global Public Goods: Electoral Delegation And Cooperation," Economic Inquiry, Western Economic Association International, vol. 56(1), pages 381-397, January.
    10. Caragliu, Andrea & Graziano, Marcello, 2022. "The spatial dimension of energy transition policies, practices and technologies," Energy Policy, Elsevier, vol. 168(C).
    11. Bessi, Alessandro & Guidolin, Mariangela & Manfredi, Piero, 2021. "The role of gas on future perspectives of renewable energy diffusion: Bridging technology or lock-in?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    12. Jorge M. Streb & Gustavo Torrens, 2011. "Meaningful talk," CEMA Working Papers: Serie Documentos de Trabajo. 443, Universidad del CEMA, revised May 2017.
    13. Detlef Vuuren & Elke Stehfest, 2013. "If climate action becomes urgent: the importance of response times for various climate strategies," Climatic Change, Springer, vol. 121(3), pages 473-486, December.
    14. Grażyna Wojtkowska-Łodej & Elżbieta Jakubów, 2022. "The Role of Clean Generation Technologies in the Energy Transformation in Poland," Energies, MDPI, vol. 15(13), pages 1-18, July.
    15. Andy Gouldson & Rory Sullivan, 2014. "Understanding the Governance of Corporations: An Examination of the Factors Shaping UK Supermarket Strategies on Climate Change," Environment and Planning A, , vol. 46(12), pages 2972-2990, December.
    16. David Klenert & Franziska Funke & Linus Mattauch & Brian O’Callaghan, 2020. "Five Lessons from COVID-19 for Advancing Climate Change Mitigation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 751-778, August.
    17. Thomas Vendryes, 2014. "Peasants Against Private Property Rights: A Review Of The Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 971-995, December.
    18. Michael Peneder & Spyros Arvanitis & Christian Rammer & Tobias Stucki & Martin Wörter, 2022. "Policy instruments and self-reported impacts of the adoption of energy saving technologies in the DACH region," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 49(2), pages 369-404, May.
    19. Meyer, Camille, 2020. "The commons: A model for understanding collective action and entrepreneurship in communities," Journal of Business Venturing, Elsevier, vol. 35(5).
    20. Haucap, Justus, 2017. "The rule of law and the emergence of market exchange: A new institutional economic perspective," DICE Discussion Papers 276, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:66:y:2014:i:c:p:104-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.