IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v62y2013icp625-636.html
   My bibliography  Save this article

Evaluation of emission cost of inefficiency in road freight transportation in Turkey

Author

Listed:
  • Ozen, Murat
  • Tuydes-Yaman, Hediye

Abstract

Turkey as a European Union candidate state, signed Kyoto Protocol in 2009, which required reduction in the greenhouse gas emissions. Road freight transportation accounts for a quarter of the emissions from transportation sector, so it is one of the implementation areas for emission reductions. When disaggregate data exist, it is possible to detect inefficiency in freight movements and consequently to quantify emission cost of it in road freight sector. Using roadside axle surveys, this study first described the characteristics of road freight movements in Turkey for the period of 2000–2009. Emission estimations for the same period were presented to form a base for potential emission reduction analyses. The results showed that emission savings could be up to 11% by penalizing empty movements even only in the long haul. However, a policy regarding elimination of only inefficiently loaded movements without targeting reduction of empty runs did not provide significant emission reduction capacity. A scenario of replacing Conventional trucks with Euro IV ones showed significant emission reduction potential, especially for regulated emissions, and it may be the most promising option from application perspective.

Suggested Citation

  • Ozen, Murat & Tuydes-Yaman, Hediye, 2013. "Evaluation of emission cost of inefficiency in road freight transportation in Turkey," Energy Policy, Elsevier, vol. 62(C), pages 625-636.
  • Handle: RePEc:eee:enepol:v:62:y:2013:i:c:p:625-636
    DOI: 10.1016/j.enpol.2013.07.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513007180
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.07.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Itf, 2008. "Transport Outlook 2008: Focusing on CO2 Emissions from Road Vehicles," OECD/ITF Joint Transport Research Centre Discussion Papers 2008/13, OECD Publishing.
    2. Piecyk, Maja I. & McKinnon, Alan C., 2010. "Forecasting the carbon footprint of road freight transport in 2020," International Journal of Production Economics, Elsevier, vol. 128(1), pages 31-42, November.
    3. Zanni, Alberto M. & Bristow, Abigail L., 2010. "Emissions of CO2 from road freight transport in London: Trends and policies for long run reductions," Energy Policy, Elsevier, vol. 38(4), pages 1774-1786, April.
    4. Soylu, Seref, 2007. "Estimation of Turkish road transport emissions," Energy Policy, Elsevier, vol. 35(8), pages 4088-4094, August.
    5. Liimatainen, Heikki & Pöllänen, Markus, 2010. "Trends of energy efficiency in Finnish road freight transport 1995-2009 and forecast to 2016," Energy Policy, Elsevier, vol. 38(12), pages 7676-7686, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Holden, R. & Xu, B. & Greening, P. & Piecyk, M. & Dadhich, P., 2016. "Towards a common measure of greenhouse gas related logistics activity using data envelopment analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 105-119.
    2. Jessica Wehner, 2018. "Energy Efficiency in Logistics: An Interactive Approach to Capacity Utilisation," Sustainability, MDPI, vol. 10(6), pages 1-19, May.
    3. Mustapa, Siti Indati & Bekhet, Hussain Ali, 2016. "Analysis of CO2 emissions reduction in the Malaysian transportation sector: An optimisation approach," Energy Policy, Elsevier, vol. 89(C), pages 171-183.
    4. Rafael Tordecilla-Madera & Andrés Polo & Adrián Cañón, 2018. "Vehicles Allocation for Fruit Distribution Considering CO 2 Emissions and Decisions on Subcontracting," Sustainability, MDPI, vol. 10(7), pages 1-21, July.
    5. Zuo, Chengchoa & Birkin, Mark & Clarke, Graham & McEvoy, Fiona & Bloodworth, Andrew, 2018. "Reducing carbon emissions related to the transportation of aggregates: Is road or rail the solution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 26-38.
    6. Tseng, Po-Hsing & Lin, Dung-Ying & Chien, Steven, 2014. "Investigating the impact of highway electronic toll collection to the external cost: A case study in Taiwan," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 265-272.
    7. Liimatainen, Heikki & van Vliet, Oscar & Aplyn, David, 2019. "The potential of electric trucks – An international commodity-level analysis," Applied Energy, Elsevier, vol. 236(C), pages 804-814.
    8. Seitz, Claudio S. & Beuttenmüller, Oliver & Terzidis, Orestis, 2015. "Organizational adoption behavior of CO2-saving power train technologies: An empirical study on the German heavy-duty vehicles market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 247-262.
    9. Liimatainen, Heikki & Pöllänen, Markus, 2013. "The impact of sectoral economic development on the energy efficiency and CO2 emissions of road freight transport," Transport Policy, Elsevier, vol. 27(C), pages 150-157.
    10. Breen, Benjamin & Vega, Amaya & Feo-Valero, Maria, 2015. "An empirical analysis of mode and route choice for international freight transport in Ireland," Working Papers 262587, National University of Ireland, Galway, Socio-Economic Marine Research Unit.
    11. Palander, Teijo & Haavikko, Hanna & Kärhä, Kalle, 2018. "Towards sustainable wood procurement in forest industry – The energy efficiency of larger and heavier vehicles in Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 100-118.
    12. Franco Ruzzenenti & Andreas A. Papandreou, 2015. "Effects of fossil fuel prices on the transition to a low-carbon economy," Working papers wpaper89, Financialisation, Economy, Society & Sustainable Development (FESSUD) Project.
    13. Zhang, Zhenzhen & Wei, Lijun & Lim, Andrew, 2015. "An evolutionary local search for the capacitated vehicle routing problem minimizing fuel consumption under three-dimensional loading constraints," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 20-35.
    14. Tobias Meyer & Heiko A. von der Gracht & Evi Hartmann, 2022. "Technology foresight for sustainable road freight transportation: Insights from a global real‐time Delphi study," Futures & Foresight Science, John Wiley & Sons, vol. 4(1), March.
    15. Minglu Ma & Qiang Wang, 2022. "Assessment and Forecast of Green Total Factor Energy Efficiency in the Yellow River Basin—A Perspective Distinguishing the Upper, Middle and Lower Stream," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    16. Xu Wang & Xiang Su & Ke Bi, 2023. "Achieving Synergies of Carbon Emission Reduction, Cost Savings, and Asset Investments in China’s Industrial Sector: Towards Sustainable Practices," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    17. Dekker, Rommert & Bloemhof, Jacqueline & Mallidis, Ioannis, 2012. "Operations Research for green logistics – An overview of aspects, issues, contributions and challenges," European Journal of Operational Research, Elsevier, vol. 219(3), pages 671-679.
    18. Liao, Chun-Hsiung & Tseng, Po-Hsing & Cullinane, Kevin & Lu, Chin-Shan, 2010. "The impact of an emerging port on the carbon dioxide emissions of inland container transport: An empirical study of Taipei port," Energy Policy, Elsevier, vol. 38(9), pages 5251-5257, September.
    19. Nealer, Rachael & Matthews, H. Scott & Hendrickson, Chris, 2012. "Assessing the energy and greenhouse gas emissions mitigation effectiveness of potential US modal freight policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 588-601.
    20. Mahlia, T.M.I. & Tohno, S. & Tezuka, T., 2012. "History and current status of the motor vehicle energy labeling and its implementation possibilities in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1828-1844.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:62:y:2013:i:c:p:625-636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.