IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v62y2013icp1533-1543.html
   My bibliography  Save this article

Assessment of China's renewable energy contribution during the 12th Five Year Plan

Author

Listed:
  • Hong, Lixuan
  • Zhou, Nan
  • Fridley, David
  • Raczkowski, Chris

Abstract

In recent years, China has been ambitious in investing and developing renewable energy technologies, aiming to enhance its energy security, mitigate its energy-related CO2 emissions and develop renewable energy industry. The 12th Five Year Plan (2011–2015) has set clear targets on installed capacities of different renewable energy technologies. This study aimed to assess the possible contribution of 12th Five Year Plan for China's future energy system and identify factors that might influence its impacts. First, current status of renewable energy development in China has been reviewed. Then several energy scenarios have been developed in an hourly simulation using an energy system analysis tool EnergyPLAN. It was identified that existing grid bottleneck would greatly reduce the potential contribution of renewable installations in terms of share of renewable electricity generation, share of non-fossil fuels in primary energy and system CO2 emissions. In contrast, improving technical performance of renewable energy technologies and sectoral energy efficiency plays an important role in increasing the share of renewables and promoting China’s energy system transition. Finally, some policy suggestions were drawn to facilitate a better implementation of the renewable energy plan.

Suggested Citation

  • Hong, Lixuan & Zhou, Nan & Fridley, David & Raczkowski, Chris, 2013. "Assessment of China's renewable energy contribution during the 12th Five Year Plan," Energy Policy, Elsevier, vol. 62(C), pages 1533-1543.
  • Handle: RePEc:eee:enepol:v:62:y:2013:i:c:p:1533-1543
    DOI: 10.1016/j.enpol.2013.07.110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513007684
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.07.110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lund, Henrik & Munster, Ebbe, 2006. "Integrated energy systems and local energy markets," Energy Policy, Elsevier, vol. 34(10), pages 1152-1160, July.
    2. Lund, Henrik & Kempton, Willett, 2008. "Integration of renewable energy into the transport and electricity sectors through V2G," Energy Policy, Elsevier, vol. 36(9), pages 3578-3587, September.
    3. DeCesaro, Jennifer & Porter, Kevin & Milligan, Michael, 2009. "Wind Energy and Power System Operations: A Review of Wind Integration Studies to Date," The Electricity Journal, Elsevier, vol. 22(10), pages 34-43, December.
    4. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    5. Zhang, Xiliang & Ruoshui, Wang & Molin, Huo & Martinot, Eric, 2010. "A study of the role played by renewable energies in China's sustainable energy supply," Energy, Elsevier, vol. 35(11), pages 4392-4399.
    6. Zhou, Zhaoqiu & Yin, Xiuli & Xu, Jie & Ma, Longlong, 2012. "The development situation of biomass gasification power generation in China," Energy Policy, Elsevier, vol. 51(C), pages 52-57.
    7. Lund, Henrik, 2005. "Large-scale integration of wind power into different energy systems," Energy, Elsevier, vol. 30(13), pages 2402-2412.
    8. Mathiesen, Brian Vad & Lund, Henrik & Karlsson, Kenneth, 2011. "100% Renewable energy systems, climate mitigation and economic growth," Applied Energy, Elsevier, vol. 88(2), pages 488-501, February.
    9. Peidong, Zhang & Yanli, Yang & jin, Shi & Yonghong, Zheng & Lisheng, Wang & Xinrong, Li, 2009. "Opportunities and challenges for renewable energy policy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 439-449, February.
    10. Lund, H. & Möller, B. & Mathiesen, B.V. & Dyrelund, A., 2010. "The role of district heating in future renewable energy systems," Energy, Elsevier, vol. 35(3), pages 1381-1390.
    11. Lund, H & Münster, E, 2003. "Modelling of energy systems with a high percentage of CHP and wind power," Renewable Energy, Elsevier, vol. 28(14), pages 2179-2193.
    12. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2011. "The first step towards a 100% renewable energy-system for Ireland," Applied Energy, Elsevier, vol. 88(2), pages 502-507, February.
    13. Lund, Henrik & Münster, Ebbe, 2006. "Integrated transportation and energy sector CO2 emission control strategies," Transport Policy, Elsevier, vol. 13(5), pages 426-433, September.
    14. Nielsen, Steffen & Sorknæs, Peter & Østergaard, Poul Alberg, 2011. "Electricity market auction settings in a future Danish electricity system with a high penetration of renewable energy sources – A comparison of marginal pricing and pay-as-bid," Energy, Elsevier, vol. 36(7), pages 4434-4444.
    15. Lund, Henrik & Clark, Woodrow W., 2002. "Management of fluctuations in wind power and CHP comparing two possible Danish strategies," Energy, Elsevier, vol. 27(5), pages 471-483.
    16. Le, Ngoc Anh & Bhattacharyya, Subhes C., 2011. "Integration of wind power into the British system in 2020," Energy, Elsevier, vol. 36(10), pages 5975-5983.
    17. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    18. Wang, Shujie & Yuan, Peng & Li, Dong & Jiao, Yuhe, 2011. "An overview of ocean renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 91-111, January.
    19. Lund, H. & Münster, E., 2003. "Management of surplus electricity-production from a fluctuating renewable-energy source," Applied Energy, Elsevier, vol. 76(1-3), pages 65-74, September.
    20. Chai, Qimin & Zhang, Xiliang, 2010. "Technologies and policies for the transition to a sustainable energy system in china," Energy, Elsevier, vol. 35(10), pages 3995-4002.
    21. Mathiesen, B.V. & Lund, H. & Nørgaard, P., 2008. "Integrated transport and renewable energy systems," Utilities Policy, Elsevier, vol. 16(2), pages 107-116, June.
    22. Cherni, Judith A. & Kentish, Joanna, 2007. "Renewable energy policy and electricity market reforms in China," Energy Policy, Elsevier, vol. 35(7), pages 3616-3629, July.
    23. Lund, H. & Siupsinskas, G. & Martinaitis, V., 2005. "Implementation strategy for small CHP-plants in a competitive market: the case of Lithuania," Applied Energy, Elsevier, vol. 82(3), pages 214-227, November.
    24. Junfeng, Li & Wan, Yih-huei & Ohi, James M., 1997. "Renewable energy development in China: Resource assessment, technology status, and greenhouse gas mitigation potential," Applied Energy, Elsevier, vol. 56(3-4), pages 381-394, March.
    25. Yunna, Wu & Ruhang, Xu, 2013. "Current status, future potentials and challenges of renewable energy development in Gansu province (Northwest China)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 73-86.
    26. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2011. "Role of renewable energy sources in environmental protection: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1513-1524, April.
    27. Wang, Qiang & Chen, Yong, 2010. "Status and outlook of China's free-carbon electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1014-1025, April.
    28. Schuman, Sara & Lin, Alvin, 2012. "China's Renewable Energy Law and its impact on renewable power in China: Progress, challenges and recommendations for improving implementation," Energy Policy, Elsevier, vol. 51(C), pages 89-109.
    29. Lund, H., 2006. "Large-scale integration of optimal combinations of PV, wind and wave power into the electricity supply," Renewable Energy, Elsevier, vol. 31(4), pages 503-515.
    30. Münster, Marie & Lund, Henrik, 2009. "Use of waste for heat, electricity and transport—Challenges when performing energy system analysis," Energy, Elsevier, vol. 34(5), pages 636-644.
    31. Chen, Min & Lund, Henrik & Rosendahl, Lasse A. & Condra, Thomas J., 2010. "Energy efficiency analysis and impact evaluation of the application of thermoelectric power cycle to today's CHP systems," Applied Energy, Elsevier, vol. 87(4), pages 1231-1238, April.
    32. Blarke, M.B. & Lund, H., 2008. "The effectiveness of storage and relocation options in renewable energy systems," Renewable Energy, Elsevier, vol. 33(7), pages 1499-1507.
    33. Liu, Tong & Xu, Gang & Cai, Peng & Tian, Longhu & Huang, Qili, 2011. "Development forecast of renewable energy power generation in China and its influence on the GHG control strategy of the country," Renewable Energy, Elsevier, vol. 36(4), pages 1284-1292.
    34. Hong, Lixuan & Lund, Henrik & Mathiesen, Brian Vad & Möller, Bernd, 2013. "2050 pathway to an active renewable energy scenario for Jiangsu province," Energy Policy, Elsevier, vol. 53(C), pages 267-278.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong, Lixuan & Lund, Henrik & Möller, Bernd, 2012. "The importance of flexible power plant operation for Jiangsu's wind integration," Energy, Elsevier, vol. 41(1), pages 499-507.
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Ma, Tao & Østergaard, Poul Alberg & Lund, Henrik & Yang, Hongxing & Lu, Lin, 2014. "An energy system model for Hong Kong in 2020," Energy, Elsevier, vol. 68(C), pages 301-310.
    4. Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
    5. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad, 2011. "Large-scale integration of wind power into the existing Chinese energy system," Energy, Elsevier, vol. 36(8), pages 4753-4760.
    6. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    7. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    8. Gota, Dan-Ioan & Lund, Henrik & Miclea, Liviu, 2011. "A Romanian energy system model and a nuclear reduction strategy," Energy, Elsevier, vol. 36(11), pages 6413-6419.
    9. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    10. Nielsen, Steffen & Sorknæs, Peter & Østergaard, Poul Alberg, 2011. "Electricity market auction settings in a future Danish electricity system with a high penetration of renewable energy sources – A comparison of marginal pricing and pay-as-bid," Energy, Elsevier, vol. 36(7), pages 4434-4444.
    11. Mathiesen, Brian Vad & Lund, Henrik & Karlsson, Kenneth, 2011. "100% Renewable energy systems, climate mitigation and economic growth," Applied Energy, Elsevier, vol. 88(2), pages 488-501, February.
    12. Dominković, D.F. & Weinand, J.M. & Scheller, F. & D'Andrea, M. & McKenna, R., 2022. "Reviewing two decades of energy system analysis with bibliometrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    13. Hong, Lixuan & Lund, Henrik & Mathiesen, Brian Vad & Möller, Bernd, 2013. "2050 pathway to an active renewable energy scenario for Jiangsu province," Energy Policy, Elsevier, vol. 53(C), pages 267-278.
    14. Kwon, Pil Seok & Østergaard, Poul Alberg, 2013. "Priority order in using biomass resources – Energy systems analyses of future scenarios for Denmark," Energy, Elsevier, vol. 63(C), pages 86-94.
    15. Ćosić, Boris & Krajačić, Goran & Duić, Neven, 2012. "A 100% renewable energy system in the year 2050: The case of Macedonia," Energy, Elsevier, vol. 48(1), pages 80-87.
    16. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "Modelling the existing Irish energy-system to identify future energy costs and the maximum wind penetration feasible," Energy, Elsevier, vol. 35(5), pages 2164-2173.
    17. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    18. Pillai, Jayakrishnan R. & Heussen, Kai & Østergaard, Poul Alberg, 2011. "Comparative analysis of hourly and dynamic power balancing models for validating future energy scenarios," Energy, Elsevier, vol. 36(5), pages 3233-3243.
    19. Münster, Marie & Lund, Henrik, 2009. "Use of waste for heat, electricity and transport—Challenges when performing energy system analysis," Energy, Elsevier, vol. 34(5), pages 636-644.
    20. Vidal-Amaro, Juan José & Østergaard, Poul Alberg & Sheinbaum-Pardo, Claudia, 2015. "Optimal energy mix for transitioning from fossil fuels to renewable energy sources – The case of the Mexican electricity system," Applied Energy, Elsevier, vol. 150(C), pages 80-96.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:62:y:2013:i:c:p:1533-1543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.