IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v62y2013icp1120-1127.html
   My bibliography  Save this article

Antecedents of employee electricity saving behavior in organizations: An empirical study based on norm activation model

Author

Listed:
  • Zhang, Yixiang
  • Wang, Zhaohua
  • Zhou, Guanghui

Abstract

China is one of the major energy-consuming countries, and is under great pressure to promote energy saving and reduce domestic energy consumption. Employees constitute an important target group for energy saving. However, only a few research efforts have been paid to study what drives employee energy saving behavior in organizations. To fill this gap, drawing on norm activation model (NAM), we built a research model to study antecedents of employee electricity saving behavior in organizations. The model was empirically tested using survey data collected from office workers in Beijing, China. Results show that personal norm positively influences employee electricity saving behavior. Organizational electricity saving climate negatively moderates the effect of personal norm on electricity saving behavior. Awareness of consequences, ascription of responsibility, and organizational electricity saving climate positively influence personal norm. Furthermore, awareness of consequences positively influences ascription of responsibility. This paper contributes to the energy saving behavior literature by building a theoretical model of employee electricity saving behavior which is understudied in the current literature. Based on the empirical results, implications on how to promote employee electricity saving are discussed.

Suggested Citation

  • Zhang, Yixiang & Wang, Zhaohua & Zhou, Guanghui, 2013. "Antecedents of employee electricity saving behavior in organizations: An empirical study based on norm activation model," Energy Policy, Elsevier, vol. 62(C), pages 1120-1127.
  • Handle: RePEc:eee:enepol:v:62:y:2013:i:c:p:1120-1127
    DOI: 10.1016/j.enpol.2013.07.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513006794
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.07.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Barr, Stewart & Gilg, Andrew W & Ford, Nicholas, 2005. "The household energy gap: examining the divide between habitual- and purchase-related conservation behaviours," Energy Policy, Elsevier, vol. 33(11), pages 1425-1444, July.
    2. Banfi, Silvia & Farsi, Mehdi & Filippini, Massimo & Jakob, Martin, 2008. "Willingness to pay for energy-saving measures in residential buildings," Energy Economics, Elsevier, vol. 30(2), pages 503-516, March.
    3. Tenenhaus, Michel & Vinzi, Vincenzo Esposito & Chatelin, Yves-Marie & Lauro, Carlo, 2005. "PLS path modeling," Computational Statistics & Data Analysis, Elsevier, vol. 48(1), pages 159-205, January.
    4. Hansla, Andre & Gamble, Amelie & Juliusson, Asgeir & Garling, Tommy, 2008. "Psychological determinants of attitude towards and willingness to pay for green electricity," Energy Policy, Elsevier, vol. 36(2), pages 768-774, February.
    5. Kwak, So-Yoon & Yoo, Seung-Hoon & Kwak, Seung-Jun, 2010. "Valuing energy-saving measures in residential buildings: A choice experiment study," Energy Policy, Elsevier, vol. 38(1), pages 673-677, January.
    6. Wynne W. Chin & Barbara L. Marcolin & Peter R. Newsted, 2003. "A Partial Least Squares Latent Variable Modeling Approach for Measuring Interaction Effects: Results from a Monte Carlo Simulation Study and an Electronic-Mail Emotion/Adoption Study," Information Systems Research, INFORMS, vol. 14(2), pages 189-217, June.
    7. Gyberg, Per & Palm, Jenny, 2009. "Influencing households' energy behaviour--how is this done and on what premises?," Energy Policy, Elsevier, vol. 37(7), pages 2807-2813, July.
    8. Dianshu, Feng & Sovacool, Benjamin K. & Minh Vu, Khuong, 2010. "The barriers to energy efficiency in China: Assessing household electricity savings and consumer behavior in Liaoning Province," Energy Policy, Elsevier, vol. 38(2), pages 1202-1209, February.
    9. Abrahamse, Wokje & Steg, Linda, 2009. "How do socio-demographic and psychological factors relate to households' direct and indirect energy use and savings?," Journal of Economic Psychology, Elsevier, vol. 30(5), pages 711-720, October.
    10. Thøgersen, John & Grønhøj, Alice, 2010. "Electricity saving in households--A social cognitive approach," Energy Policy, Elsevier, vol. 38(12), pages 7732-7743, December.
    11. Martinsson, Johan & Lundqvist, Lennart J. & Sundström, Aksel, 2011. "Energy saving in Swedish households. The (relative) importance of environmental attitudes," Energy Policy, Elsevier, vol. 39(9), pages 5182-5191, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yue, Ting & Long, Ruyin & Chen, Hong, 2013. "Factors influencing energy-saving behavior of urban households in Jiangsu Province," Energy Policy, Elsevier, vol. 62(C), pages 665-675.
    2. Karim Khan & Anwar Shah & Jaffar Khan, 2016. "Electricity Consumption Patterns: Comparative Evidence from Pakistan’s Public and Private Sectors," Lahore Journal of Economics, Department of Economics, The Lahore School of Economics, vol. 21(1), pages 99-122, Jan-June.
    3. Yu, Yihua & Guo, Jin, 2016. "Identifying electricity-saving potential in rural China: Empirical evidence from a household survey," Energy Policy, Elsevier, vol. 94(C), pages 1-9.
    4. Kabeya Clement Mulamba, 2020. "Relationship between education and households? electricity-saving behaviour in South Africa: A multilevel logistic analysis," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2020(2), pages 51-74.
    5. Wang, Zhaohua & Zhang, Bin & Yin, Jianhua & Zhang, Yixiang, 2011. "Determinants and policy implications for household electricity-saving behaviour: Evidence from Beijing, China," Energy Policy, Elsevier, vol. 39(6), pages 3550-3557, June.
    6. Zhang, Yixiang & Wang, Zhaohua & Zhou, Guanghui, 2013. "Determinants and implications of employee electricity saving habit: An empirical study in China," Applied Energy, Elsevier, vol. 112(C), pages 1529-1535.
    7. Wang, Zhaohua & Zhang, Bin & Zhang, Yixiang, 2012. "Determinants of public acceptance of tiered electricity price reform in China: Evidence from four urban cities," Applied Energy, Elsevier, vol. 91(1), pages 235-244.
    8. Wang, Bo & Wang, Xiaomeng & Guo, Dongxue & Zhang, Bin & Wang, Zhaohua, 2018. "Analysis of factors influencing residents’ habitual energy-saving behaviour based on NAM and TPB models: Egoism or altruism?," Energy Policy, Elsevier, vol. 116(C), pages 68-77.
    9. Nieves García-de-Frutos & José Manuel Ortega-Egea & Javier Martínez-del-Río, 2018. "Anti-consumption for Environmental Sustainability: Conceptualization, Review, and Multilevel Research Directions," Journal of Business Ethics, Springer, vol. 148(2), pages 411-435, March.
    10. Sylwia Słupik & Joanna Kos-Łabędowicz & Joanna Trzęsiok, 2021. "Energy-Related Behaviour of Consumers from the Silesia Province (Poland)—Towards a Low-Carbon Economy," Energies, MDPI, vol. 14(8), pages 1-23, April.
    11. Felipe Encinas & Carlos Marmolejo-Duarte & Elizabeth Wagemann & Carlos Aguirre, 2019. "Energy-Efficient Real Estate or How It Is Perceived by Potential Homebuyers in Four Latin American Countries," Sustainability, MDPI, vol. 11(13), pages 1-24, June.
    12. Sweeney, Jillian C. & Kresling, Johannes & Webb, Dave & Soutar, Geoffrey N. & Mazzarol, Tim, 2013. "Energy saving behaviours: Development of a practice-based model," Energy Policy, Elsevier, vol. 61(C), pages 371-381.
    13. Quaglione, Davide & Cassetta, Ernesto & Crociata, Alessandro & Sarra, Alessandro, 2017. "Exploring additional determinants of energy-saving behaviour: The influence of individuals' participation in cultural activities," Energy Policy, Elsevier, vol. 108(C), pages 503-511.
    14. Tampakis, Stilianos & Arabatzis, Garyfallos & Tsantopoulos, Georgios & Rerras, Ioannis, 2017. "Citizens’ views on electricity use, savings and production from renewable energy sources: A case study from a Greek island," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 39-49.
    15. Stamatios Ntanos & Grigorios L. Kyriakopoulos & Garyfallos Arabatzis & Vasilios Palios & Miltiadis Chalikias, 2018. "Environmental Behavior of Secondary Education Students: A Case Study at Central Greece," Sustainability, MDPI, vol. 10(5), pages 1-22, May.
    16. Trotta, Gianluca, 2018. "Factors affecting energy-saving behaviours and energy efficiency investments in British households," Energy Policy, Elsevier, vol. 114(C), pages 529-539.
    17. Samdruk Dharshing & Stefanie Lena Hille, 2017. "The Energy Paradox Revisited: Analyzing the Role of Individual Differences and Framing Effects in Information Perception," Journal of Consumer Policy, Springer, vol. 40(4), pages 485-508, December.
    18. Ranran Yang & Chunxiao Yue & Jingjing Li & Junhong Zhu & Hongshu Chen & Jia Wei, 2020. "The Influence of Information Intervention Cognition on College Students’ Energy-Saving Behavior Intentions," IJERPH, MDPI, vol. 17(5), pages 1-17, March.
    19. Camara, N’Famory & Xu, Deyi & Binyet, Emmanuel, 2018. "Enhancing household energy consumption: How should it be done?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 669-681.
    20. Wang, Shanyong & Lin, Shoufu & Li, Jun, 2018. "Exploring the effects of non-cognitive and emotional factors on household electricity saving behavior," Energy Policy, Elsevier, vol. 115(C), pages 171-180.

    More about this item

    Keywords

    Norm activation model; Organizational electricity saving climate; Electricity saving behavior;
    All these keywords.

    JEL classification:

    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • C83 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Survey Methods; Sampling Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:62:y:2013:i:c:p:1120-1127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.