IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v54y2013icp335-342.html
   My bibliography  Save this article

Economic and environmental gains of China's fossil energy subsidies reform: A rebound effect case study with EIMO model

Author

Listed:
  • Hong, Li
  • Liang, Dong
  • Di, Wang

Abstract

Energy consumption and efficiency emerged as the hottest topic in the context of China's sustainable development. Energy subsidies and “rebound effect” were closely related to this topic while few combinative studies on them with a focus on China. This paper employed a co-thinking approach, focusing on how the energy subsidies reform could mitigate the rebound effect in China, and how to achieve an “economic and environmental gains” that reduced pecuniary spending, improved the distorted energy market and reduced energy consumption simultaneously. Firstly, with price-gap approach we calculated the total energy subsidies scale of China in 2007, which amounted to582.0 billion CNY; then we detected and identified rebound effect of China energy consumption with the features. Furthermore, based on China 2007 monetary input–output table and energy flow analysis, we compiled a hybrid physical energy input and monetary output model (EIMO) to simulate the mitigation effect of subsidies reform. Results showed that removing energy subsidies would decrease ultimate demand of different economy sectors and reduce the accumulatively physical consumption of coal, oil, natural gas and electricity by 17.74, 13.47, 3.64 and 15.82 million tce, respectively. Finally we discussed relevant policy issues on China's energy subsidies reform in depth.

Suggested Citation

  • Hong, Li & Liang, Dong & Di, Wang, 2013. "Economic and environmental gains of China's fossil energy subsidies reform: A rebound effect case study with EIMO model," Energy Policy, Elsevier, vol. 54(C), pages 335-342.
  • Handle: RePEc:eee:enepol:v:54:y:2013:i:c:p:335-342
    DOI: 10.1016/j.enpol.2012.11.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512010270
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.11.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Boqiang & Jiang, Zhujun, 2011. "Estimates of energy subsidies in China and impact of energy subsidy reform," Energy Economics, Elsevier, vol. 33(2), pages 273-283, March.
    2. Wang, H. & Zhou, D.Q. & Zhou, P. & Zha, D.L., 2012. "Direct rebound effect for passenger transport: Empirical evidence from Hong Kong," Applied Energy, Elsevier, vol. 92(C), pages 162-167.
    3. Barker, Terry & Ekins, Paul & Foxon, Tim, 2007. "The macro-economic rebound effect and the UK economy," Energy Policy, Elsevier, vol. 35(10), pages 4935-4946, October.
    4. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    5. Wei, Taoyuan, 2010. "A general equilibrium view of global rebound effects," Energy Economics, Elsevier, vol. 32(3), pages 661-672, May.
    6. Safarzynska, Karolina, 2012. "Modeling the rebound effect in two manufacturing industries," Technological Forecasting and Social Change, Elsevier, vol. 79(6), pages 1135-1154.
    7. Wu, Rong-Hwa & Chen, Chia-Yon, 1990. "On the application of input-output analysis to energy issues," Energy Economics, Elsevier, vol. 12(1), pages 71-76, January.
    8. Matos, Fernando J.F. & Silva, Francisco J.F., 2011. "The rebound effect on road freight transport: Empirical evidence from Portugal," Energy Policy, Elsevier, vol. 39(5), pages 2833-2841, May.
    9. Grepperud, Sverre & Rasmussen, Ingeborg, 2004. "A general equilibrium assessment of rebound effects," Energy Economics, Elsevier, vol. 26(2), pages 261-282, March.
    10. Wang, H. & Zhou, P. & Zhou, D.Q., 2012. "An empirical study of direct rebound effect for passenger transport in urban China," Energy Economics, Elsevier, vol. 34(2), pages 452-460.
    11. Harty D. Saunders, 1992. "The Khazzoom-Brookes Postulate and Neoclassical Growth," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 131-148.
    12. de Haan, Peter & Mueller, Michel G. & Peters, Anja, 2006. "Does the hybrid Toyota Prius lead to rebound effects? Analysis of size and number of cars previously owned by Swiss Prius buyers," Ecological Economics, Elsevier, vol. 58(3), pages 592-605, June.
    13. Bentzen, Jan, 2004. "Estimating the rebound effect in US manufacturing energy consumption," Energy Economics, Elsevier, vol. 26(1), pages 123-134, January.
    14. Roy, Joyashree, 2000. "The rebound effect: some empirical evidence from India," Energy Policy, Elsevier, vol. 28(6-7), pages 433-438, June.
    15. Holub, H. W. & Schnabl, H., 1985. "Qualitative input-output analysis and structural information," Economic Modelling, Elsevier, vol. 2(1), pages 67-73, January.
    16. Liang, Sai & Zhang, Tianzhu, 2011. "Interactions of energy technology development and new energy exploitation with water technology development in China," Energy, Elsevier, vol. 36(12), pages 6960-6966.
    17. Ouyang, Jinlong & Long, Enshen & Hokao, Kazunori, 2010. "Rebound effect in Chinese household energy efficiency and solution for mitigating it," Energy, Elsevier, vol. 35(12), pages 5269-5276.
    18. Li, Huiquan & Bao, Weijun & Xiu, Caihong & Zhang, Yi & Xu, Hongbin, 2010. "Energy conservation and circular economy in China's process industries," Energy, Elsevier, vol. 35(11), pages 4273-4281.
    19. Liang, Sai & Wang, Can & Zhang, Tianzhu, 2010. "An improved input-output model for energy analysis: A case study of Suzhou," Ecological Economics, Elsevier, vol. 69(9), pages 1805-1813, July.
    20. Mizobuchi, Kenichi, 2008. "An empirical study on the rebound effect considering capital costs," Energy Economics, Elsevier, vol. 30(5), pages 2486-2516, September.
    21. Haas, Reinhard & Biermayr, Peter, 2000. "The rebound effect for space heating Empirical evidence from Austria," Energy Policy, Elsevier, vol. 28(6-7), pages 403-410, June.
    22. J. Daniel Khazzoom, 1980. "Economic Implications of Mandated Efficiency in Standards for Household Appliances," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 21-40.
    23. Ruzzenenti, F. & Basosi, R., 2008. "The rebound effect: An evolutionary perspective," Ecological Economics, Elsevier, vol. 67(4), pages 526-537, November.
    24. Liu, Wei & Li, Hong, 2011. "Improving energy consumption structure: A comprehensive assessment of fossil energy subsidies reform in China," Energy Policy, Elsevier, vol. 39(7), pages 4134-4143, July.
    25. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hosan, Shahadat & Rahman, Md Matiar & Karmaker, Shamal Chandra & Saha, Bidyut Baran, 2023. "Energy subsidies and energy technology innovation: Policies for polygeneration systems diffusion," Energy, Elsevier, vol. 267(C).
    2. Qiang Du & Yi Li & Libiao Bai, 2017. "The Energy Rebound Effect for the Construction Industry: Empirical Evidence from China," Sustainability, MDPI, vol. 9(5), pages 1-11, May.
    3. Wen, Xiaoqian & Bouri, Elie & Roubaud, David, 2018. "Does oil product pricing reform increase returns and uncertainty in the Chinese stock market?," The Quarterly Review of Economics and Finance, Elsevier, vol. 68(C), pages 23-30.
    4. Saeed Solaymani, 2016. "Impacts of energy subsidy reform on poverty and income inequality in Malaysia," Quality & Quantity: International Journal of Methodology, Springer, vol. 50(6), pages 2707-2723, November.
    5. Zhou, Guangyou & Zhu, Jieyu & Luo, Sumei, 2022. "The impact of fintech innovation on green growth in China: Mediating effect of green finance," Ecological Economics, Elsevier, vol. 193(C).
    6. Lin, Boqiang & Liu, Xia, 2013. "Electricity tariff reform and rebound effect of residential electricity consumption in China," Energy, Elsevier, vol. 59(C), pages 240-247.
    7. al Irsyad, M Indra & Nepal, Rabindra, 2016. "A survey based approach to estimating the benefits of energy efficiency improvements in street lighting systems in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1569-1577.
    8. Geng, Wu & Ming, Zeng & Lilin, Peng & Ximei, Liu & Bo, Li & Jinhui, Duan, 2016. "China׳s new energy development: Status, constraints and reforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 885-896.
    9. Mohammed AL MAHISH, 2017. "The Impact Of Energy Subsidy On Nitrogen Fertilizer Producers In The Gcc," Applied Econometrics and International Development, Euro-American Association of Economic Development, vol. 17(2), pages 99-118.
    10. Guo, Fei & Pachauri, Shonali & Cofala, Janusz, 2017. "Cost-effective subsidy incentives for room air conditioners in China: An analysis based on a McFadden-type discrete choice model," Energy Policy, Elsevier, vol. 110(C), pages 375-385.
    11. Opeyemi Akinyemi & Philip. O. Alege & Oluseyi. O. Ajayi & Henry Okodua, 2017. "Energy Pricing Policy and Environmental Quality in Nigeria: A Dynamic Computable General Equilibrium Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 7(1), pages 268-276.
    12. Dong, Liang & Fujita, Tsuyoshi & Zhang, Hui & Dai, Ming & Fujii, Minoru & Ohnishi, Satoshi & Geng, Yong & Liu, Zhu, 2013. "Promoting low-carbon city through industrial symbiosis: A case in China by applying HPIMO model," Energy Policy, Elsevier, vol. 61(C), pages 864-873.
    13. Wang, Xiaozhen & Zou, Honghui, 2018. "Study on the effect of wind power industry policy types on the innovation performance of different ownership enterprises: Evidence from China," Energy Policy, Elsevier, vol. 122(C), pages 241-252.
    14. Yin, Hongying & Qian, Yuting & Zhang, Bin & Pérez, Rebeca, 2023. "Urban construction and firm green innovation: Evidence from China's low-carbon pilot city initiative," Pacific-Basin Finance Journal, Elsevier, vol. 80(C).
    15. Jeon, Chanwoong & Lee, Jeongjin & Shin, Juneseuk, 2015. "Optimal subsidy estimation method using system dynamics and the real option model: Photovoltaic technology case," Applied Energy, Elsevier, vol. 142(C), pages 33-43.
    16. Maolin Liao & Yingjie Wang, 2019. "China’s Energy Consumption Rebound Effect Analysis Based on the Perspective of Technological Progress," Sustainability, MDPI, vol. 11(5), pages 1-15, March.
    17. Guo, Fei & Akenji, Lewis & Schroeder, Patrick & Bengtsson, Magnus, 2018. "Static analysis of technical and economic energy-saving potential in the residential sector of Xiamen city," Energy, Elsevier, vol. 142(C), pages 373-383.
    18. Xu, Shang & Zhang, Jun, 2023. "The welfare impacts of removing coal subsidies in rural China," Energy Economics, Elsevier, vol. 118(C).
    19. Solaymani, Saeed & Kardooni, Roozbeh & Yusoff, Sumiani Binti & Kari, Fatimah, 2015. "The impacts of climate change policies on the transportation sector," Energy, Elsevier, vol. 81(C), pages 719-728.
    20. Du, Gang & Sun, Chuanwang & Fang, Zhongnan, 2015. "Evaluating the Atkinson index of household energy consumption in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1080-1087.
    21. Li, Hong & Xie, Minghua & Zhang, Tingting, 2013. "Promote the development of renewable energy: A review and empirical study of wind power in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 101-107.
    22. Timilsina, Govinda R. & Pargal, Sheoli, 2020. "Economics of energy subsidy reforms in Bangladesh," Energy Policy, Elsevier, vol. 142(C).
    23. Solaymani, Saeed & Kari, Fatimah, 2014. "Impacts of energy subsidy reform on the Malaysian economy and transportation sector," Energy Policy, Elsevier, vol. 70(C), pages 115-125.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Ke & Lin, Boqiang, 2015. "Heterogeneity in rebound effects: Estimated results and impact of China’s fossil-fuel subsidies," Applied Energy, Elsevier, vol. 149(C), pages 148-160.
    2. Lin, Boqiang & Liu, Xia, 2013. "Reform of refined oil product pricing mechanism and energy rebound effect for passenger transportation in China," Energy Policy, Elsevier, vol. 57(C), pages 329-337.
    3. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    4. Wang, H. & Zhou, P. & Zhou, D.Q., 2012. "An empirical study of direct rebound effect for passenger transport in urban China," Energy Economics, Elsevier, vol. 34(2), pages 452-460.
    5. Toroghi, Shahaboddin H. & Oliver, Matthew E., 2019. "Framework for estimation of the direct rebound effect for residential photovoltaic systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Zhang, Yue-Jun & Liu, Zhao & Qin, Chang-Xiong & Tan, Tai-De, 2017. "The direct and indirect CO2 rebound effect for private cars in China," Energy Policy, Elsevier, vol. 100(C), pages 149-161.
    7. Wen, Fenghua & Ye, Zhengke & Yang, Huaidong & Li, Ke, 2018. "Exploring the rebound effect from the perspective of household: An analysis of China's provincial level," Energy Economics, Elsevier, vol. 75(C), pages 345-356.
    8. Thomas, Brinda A. & Azevedo, Inês L., 2013. "Estimating direct and indirect rebound effects for U.S. households with input–output analysis Part 1: Theoretical framework," Ecological Economics, Elsevier, vol. 86(C), pages 199-210.
    9. Zha, Donglan & Chen, Qian & Wang, Lijun, 2022. "Exploring carbon rebound effects in Chinese households’ consumption: A simulation analysis based on a multi-regional input–output framework," Applied Energy, Elsevier, vol. 313(C).
    10. Zhang, Yue-Jun & Peng, Hua-Rong & Su, Bin, 2017. "Energy rebound effect in China's Industry: An aggregate and disaggregate analysis," Energy Economics, Elsevier, vol. 61(C), pages 199-208.
    11. Wang, Zhaohua & Han, Bai & Lu, Milin, 2016. "Measurement of energy rebound effect in households: Evidence from residential electricity consumption in Beijing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 852-861.
    12. David I. Stern, 2010. "The Role of Energy in Economic Growth," CCEP Working Papers 0310, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    13. Lin, Boqiang & Chen, Yufang & Zhang, Guoliang, 2017. "Technological progress and rebound effect in China's nonferrous metals industry: An empirical study," Energy Policy, Elsevier, vol. 109(C), pages 520-529.
    14. Lin, Boqiang & Yang, Fang & Liu, Xia, 2013. "A study of the rebound effect on China's current energy conservation and emissions reduction: Measures and policy choices," Energy, Elsevier, vol. 58(C), pages 330-339.
    15. Yang, Lisha & Li, Zhi, 2017. "Technology advance and the carbon dioxide emission in China – Empirical research based on the rebound effect," Energy Policy, Elsevier, vol. 101(C), pages 150-161.
    16. Milin Lu & Zhaohua Wang, 2017. "Rebound effects for residential electricity use in urban China: an aggregation analysis based E-I-O and scenario simulation," Annals of Operations Research, Springer, vol. 255(1), pages 525-546, August.
    17. Wang, Zhaohua & Lu, Milin, 2014. "An empirical study of direct rebound effect for road freight transport in China," Applied Energy, Elsevier, vol. 133(C), pages 274-281.
    18. Zhang, Yue-Jun & Liu, Zhao & Zhou, Si-Ming & Qin, Chang-Xiong & Zhang, Huan, 2018. "The impact of China's Central Rise Policy on carbon emissions at the stage of operation in road sector," Economic Modelling, Elsevier, vol. 71(C), pages 159-173.
    19. Ouyang, Jinlong & Long, Enshen & Hokao, Kazunori, 2010. "Rebound effect in Chinese household energy efficiency and solution for mitigating it," Energy, Elsevier, vol. 35(12), pages 5269-5276.
    20. Orea, Luis & Llorca, Manuel & Filippini, Massimo, 2015. "A new approach to measuring the rebound effect associated to energy efficiency improvements: An application to the US residential energy demand," Energy Economics, Elsevier, vol. 49(C), pages 599-609.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:54:y:2013:i:c:p:335-342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.