IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v52y2013icp213-234.html
   My bibliography  Save this article

Is disaggregation the holy grail of energy efficiency? The case of electricity

Author

Listed:
  • Carrie Armel, K.
  • Gupta, Abhay
  • Shrimali, Gireesh
  • Albert, Adrian

Abstract

This paper aims to address two timely energy problems. First, significant low-cost energy reductions can be made in the residential and commercial sectors, but these savings have not been achievable to date. Second, billions of dollars are being spent to install smart meters, yet the energy saving and financial benefits of this infrastructure – without careful consideration of the human element – will not reach its full potential. We believe that we can address these problems by strategically marrying them, using disaggregation. Disaggregation refers to a set of statistical approaches for extracting end-use and/or appliance level data from an aggregate, or whole-building, energy signal. In this paper, we explain how appliance level data affords numerous benefits, and why using the algorithms in conjunction with smart meters is the most cost-effective and scalable solution for getting this data. We review disaggregation algorithms and their requirements, and evaluate the extent to which smart meters can meet those requirements. Research, technology, and policy recommendations are also outlined.

Suggested Citation

  • Carrie Armel, K. & Gupta, Abhay & Shrimali, Gireesh & Albert, Adrian, 2013. "Is disaggregation the holy grail of energy efficiency? The case of electricity," Energy Policy, Elsevier, vol. 52(C), pages 213-234.
  • Handle: RePEc:eee:enepol:v:52:y:2013:i:c:p:213-234
    DOI: 10.1016/j.enpol.2012.08.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512007446
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.08.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mario E. Berges & Ethan Goldman & H. Scott Matthews & Lucio Soibelman, 2010. "Enhancing Electricity Audits in Residential Buildings with Nonintrusive Load Monitoring," Journal of Industrial Ecology, Yale University, vol. 14(5), pages 844-858, October.
    2. Hledik, Ryan, 2009. "How Green Is the Smart Grid?," The Electricity Journal, Elsevier, vol. 22(3), pages 29-41, April.
    3. McCalley, L. T. & Midden, Cees J. H., 2002. "Energy conservation through product-integrated feedback: The roles of goal-setting and social orientation," Journal of Economic Psychology, Elsevier, vol. 23(5), pages 589-603, October.
    4. Yen-Yi Ho & Giovanni Parmigiani & Thomas A. Louis & Leslie M. Cope, 2011. "Modeling Liquid Association," Biometrics, The International Biometric Society, vol. 67(1), pages 133-141, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lillemo, Shuling Chen, 2014. "Measuring the effect of procrastination and environmental awareness on households' energy-saving behaviours: An empirical approach," Energy Policy, Elsevier, vol. 66(C), pages 249-256.
    2. Suresh Malodia & Alka Singh Bhatt, 2019. "Why Should I Switch Off: Understanding the Barriers to Sustainable Consumption?," Vision, , vol. 23(2), pages 134-143, June.
    3. Zhenjiao Chen & Yaqing Liu, 2020. "The Effects of Leadership and Reward Policy on Employees’ Electricity Saving Behaviors: An Empirical Study in China," IJERPH, MDPI, vol. 17(6), pages 1-15, March.
    4. Dujuan Yang & Harry Timmermans & Aloys Borgers, 2016. "The prevalence of context-dependent adjustment of activity-travel patterns in energy conservation strategies: results from a mixture-amount stated adaptation experiment," Transportation, Springer, vol. 43(1), pages 79-100, January.
    5. Schleich, Joachim & Gassmann, Xavier & Faure, Corinne & Meissner, Thomas, 2016. "Making the implicit explicit: A look inside the implicit discount rate," Energy Policy, Elsevier, vol. 97(C), pages 321-331.
    6. Yanshan Yu & Jin Yang & Bin Chen, 2012. "The Smart Grids in China—A Review," Energies, MDPI, vol. 5(5), pages 1-18, May.
    7. Bamberg, Sebastian & Fujii, Satoshi & Friman, Margareta & Gärling, Tommy, 2011. "Behaviour theory and soft transport policy measures," Transport Policy, Elsevier, vol. 18(1), pages 228-235, January.
    8. Sun, Xianming & Xiao, Shiyi & Ren, Xiaohang & Xu, Bing, 2023. "Time-varying impact of information and communication technology on carbon emissions," Energy Economics, Elsevier, vol. 118(C).
    9. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    10. Sandro Casal & Nives DellaValle & Luigi Mittone & Ivan Soraperra, 2017. "Feedback and efficient behavior," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-21, April.
    11. Kenichi Mizobuchi & Kenji Takeuchi, 2012. "The Influences of Economic and Psychological Factors on Energy-Saving Behavior: A Field Experiment in Matsuyama, Japan," Discussion Papers 1206, Graduate School of Economics, Kobe University.
    12. Büchs, Milena & Bahaj, AbuBakr S. & Blunden, Luke & Bourikas, Leonidas & Falkingham, Jane & James, Patrick & Kamanda, Mamusu & Wu, Yue, 2018. "Promoting low carbon behaviours through personalised information? Long-term evaluation of a carbon calculator interview," Energy Policy, Elsevier, vol. 120(C), pages 284-293.
    13. Hao, He & Sanandaji, Borhan M. & Poolla, Kameshwar & Vincent, Tyrone L., 2015. "Potentials and economics of residential thermal loads providing regulation reserve," Energy Policy, Elsevier, vol. 79(C), pages 115-126.
    14. Corradi, Nicola & Priftis, Konstantinos & Jacucci, Giulio & Gamberini, Luciano, 2013. "Oops, I forgot the light on! The cognitive mechanisms supporting the execution of energy saving behaviors," Journal of Economic Psychology, Elsevier, vol. 34(C), pages 88-96.
    15. Zichen Ma & Shannon W. Davis & Yen‐Yi Ho, 2023. "Flexible copula model for integrating correlated multi‐omics data from single‐cell experiments," Biometrics, The International Biometric Society, vol. 79(2), pages 1559-1572, June.
    16. Jacqueline Corbett, 2013. "Using information systems to improve energy efficiency: Do smart meters make a difference?," Information Systems Frontiers, Springer, vol. 15(5), pages 747-760, November.
    17. Kendel, Adnane & Lazaric, Nathalie & Maréchal, Kevin, 2017. "What do people ‘learn by looking’ at direct feedback on their energy consumption? Results of a field study in Southern France," Energy Policy, Elsevier, vol. 108(C), pages 593-605.
    18. Laura Abrardi, 2019. "Behavioral barriers and the energy efficiency gap: a survey of the literature," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 46(1), pages 25-43, March.
    19. Buryk, Stephen & Mead, Doug & Mourato, Susana & Torriti, Jacopo, 2015. "Investigating preferences for dynamic electricity tariffs: The effect of environmental and system benefit disclosure," Energy Policy, Elsevier, vol. 80(C), pages 190-195.
    20. Ellen van der Werff & Chieh-Yu Lee, 2021. "Feedback to Minimize Household Waste a Field Experiment in The Netherlands," Sustainability, MDPI, vol. 13(17), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:52:y:2013:i:c:p:213-234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.