IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v51y2012icp927-938.html
   My bibliography  Save this article

Future transportation: Lifetime considerations and framework for sustainability assessment

Author

Listed:
  • Sweeting, Walter J.
  • Winfield, Patricia H.

Abstract

Modern society cannot exist without mobility. It is now essential to maintain access to everyday necessities, as well as being a vital part of most economies. However, our current transportation system is placing unsustainable demands on finite resources of fossil fuels, minerals and materials; change is therefore essential. Identifying rational choices is difficult because a future transport option must not only abate these demands over the entire lifetime, but do so at an affordable cost whilst maintaining acceptable levels of utility. This paper offers a framework to evaluate powertrains for whole life criteria, in order to help validate current and future developments. It supports integrated comparisons of both fuel and vehicle technology combinations for cost, energy and greenhouse gas emissions throughout a vehicles lifetime. Case studies illustrate the use of this framework. All powertrains were found to require considerable amounts of energy and emit some emissions over their whole lifetime. Significant benefits over incumbent vehicles were found to be potentially attainable through the use of alternative powertrains. However, the majority of these benefits were currently found to increase user costs, worsen the vehicle production impacts and be heavily reliant on the source of the vehicles in-use energy.

Suggested Citation

  • Sweeting, Walter J. & Winfield, Patricia H., 2012. "Future transportation: Lifetime considerations and framework for sustainability assessment," Energy Policy, Elsevier, vol. 51(C), pages 927-938.
  • Handle: RePEc:eee:enepol:v:51:y:2012:i:c:p:927-938
    DOI: 10.1016/j.enpol.2012.09.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512008373
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.09.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Varun & Bhat, I.K. & Prakash, Ravi, 2009. "LCA of renewable energy for electricity generation systems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1067-1073, June.
    2. Hawkes, A.D., 2010. "Estimating marginal CO2 emissions rates for national electricity systems," Energy Policy, Elsevier, vol. 38(10), pages 5977-5987, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ajanovic, Amela & Haas, Reinhard, 2018. "Economic prospects and policy framework for hydrogen as fuel in the transport sector," Energy Policy, Elsevier, vol. 123(C), pages 280-288.
    2. Espinosa Valderrama, Mónica & Cadena Monroy, Ángela Inés & Behrentz Valencia, Eduardo, 2019. "Challenges in greenhouse gas mitigation in developing countries: A case study of the Colombian transport sector," Energy Policy, Elsevier, vol. 124(C), pages 111-122.
    3. Gabriel-Buenaventura, Alejandro & Azzopardi, Brian, 2015. "Energy recovery systems for retrofitting in internal combustion engine vehicles: A review of techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 955-964.
    4. Ajanovic, Amela & Haas, Reinhard, 2016. "Dissemination of electric vehicles in urban areas: Major factors for success," Energy, Elsevier, vol. 115(P2), pages 1451-1458.
    5. Carlos Eduardo Sanches de Andrade & Márcio De Almeida D’Agosto, 2016. "The Role of Rail Transit Systems in Reducing Energy and Carbon Dioxide Emissions: The Case of The City of Rio de Janeiro," Sustainability, MDPI, vol. 8(2), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Busola D. Akintayo & Oluwafemi E. Ige & Olubayo M. Babatunde & Oludolapo A. Olanrewaju, 2023. "Evaluation and Prioritization of Power-Generating Systems Using a Life Cycle Assessment and a Multicriteria Decision-Making Approach," Energies, MDPI, vol. 16(18), pages 1-18, September.
    2. Rüdisüli, Martin & Romano, Elliot & Eggimann, Sven & Patel, Martin K., 2022. "Decarbonization strategies for Switzerland considering embedded greenhouse gas emissions in electricity imports," Energy Policy, Elsevier, vol. 162(C).
    3. Carnevale, E. & Lombardi, L. & Zanchi, L., 2014. "Life Cycle Assessment of solar energy systems: Comparison of photovoltaic and water thermal heater at domestic scale," Energy, Elsevier, vol. 77(C), pages 434-446.
    4. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    5. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    6. Onat, Nuri Cihat & Kucukvar, Murat & Tatari, Omer, 2015. "Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States," Applied Energy, Elsevier, vol. 150(C), pages 36-49.
    7. Dzikuć Maciej, 2015. "Environmental management with the use of LCA in the Polish energy system," Management, Sciendo, vol. 19(1), pages 89-97, May.
    8. Filippo Beltrami & Fulvio Fontini & Monica Giulietti & Luigi Grossi, 2022. "The Zonal and Seasonal CO2 Marginal Emissions Factors for the Italian Power Market," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(2), pages 381-411, October.
    9. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Yihsuan Wu & Jian Hua, 2022. "Investigating a Retrofit Thermal Power Plant from a Sustainable Environment Perspective—A Fuel Lifecycle Assessment Case Study," Sustainability, MDPI, vol. 14(8), pages 1-26, April.
    11. Sokka, L. & Sinkko, T. & Holma, A. & Manninen, K. & Pasanen, K. & Rantala, M. & Leskinen, P., 2016. "Environmental impacts of the national renewable energy targets – A case study from Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1599-1610.
    12. Howard, B. & Waite, M. & Modi, V., 2017. "Current and near-term GHG emissions factors from electricity production for New York State and New York City," Applied Energy, Elsevier, vol. 187(C), pages 255-271.
    13. Capuder, Tomislav & Mancarella, Pierluigi, 2014. "Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options," Energy, Elsevier, vol. 71(C), pages 516-533.
    14. Emanuele Bonamente & Lara Pelliccia & Maria Cleofe Merico & Sara Rinaldi & Alessandro Petrozzi, 2015. "The Multifunctional Environmental Energy Tower: Carbon Footprint and Land Use Analysis of an Integrated Renewable Energy Plant," Sustainability, MDPI, vol. 7(10), pages 1-21, October.
    15. Xue-Ting Jiang & Rongrong Li, 2017. "Decoupling and Decomposition Analysis of Carbon Emissions from Electric Output in the United States," Sustainability, MDPI, vol. 9(6), pages 1-13, May.
    16. Irfan, Muhammad & Iqbal, Jamshed & Iqbal, Adeel & Iqbal, Zahid & Riaz, Raja Ali & Mehmood, Adeel, 2017. "Opportunities and challenges in control of smart grids – Pakistani perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 652-674.
    17. Andrea J. Boero & Kevin Kardux & Marina Kovaleva & Daniel A. Salas & Jacco Mooijer & Syed Mashruk & Michael Townsend & Kevin Rouwenhorst & Agustin Valera-Medina & Angel D. Ramirez, 2021. "Environmental Life Cycle Assessment of Ammonia-Based Electricity," Energies, MDPI, vol. 14(20), pages 1-20, October.
    18. Gao, Cheng-kang & Na, Hong-ming & Song, Kai-hui & Dyer, Noel & Tian, Fan & Xu, Qing-jiang & Xing, Yu-hong, 2019. "Environmental impact analysis of power generation from biomass and wind farms in different locations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 307-317.
    19. Song, Cuihong & Gardner, Kevin H. & Klein, Sharon J.W. & Souza, Simone Pereira & Mo, Weiwei, 2018. "Cradle-to-grave greenhouse gas emissions from dams in the United States of America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 945-956.
    20. Radwa Salem & Ali Bahadori-Jahromi & Anastasia Mylona & Paulina Godfrey & Darren Cook, 2018. "Comparison and Evaluation of the Potential Energy, Carbon Emissions, and Financial Impacts from the Incorporation of CHP and CCHP Systems in Existing UK Hotel Buildings," Energies, MDPI, vol. 11(5), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:51:y:2012:i:c:p:927-938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.