IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v46y2012icp68-77.html
   My bibliography  Save this article

Promoting renewable energy through capacity markets: An analysis of the Russian support scheme

Author

Listed:
  • Boute, Anatole

Abstract

Most existing support schemes aim to stimulate the deployment of renewable energy sources in the electricity sector on the basis of the electricity output (MWh) of renewable energy installations. Support is anchored in the electricity commodity market. In contrast to this established approach, Russia intends to promote renewable energy through the capacity market. The idea is to remunerate investors for the installed capacity (MW) of their installations, in particular for the availability of their installations to produce electricity. This article argues that, contrary to the implicit consensus, a capacity-based approach to supporting renewable energy can provide an alternative to the current output-based schemes. Capacity-based schemes limit the incentive that the operators of renewable energy installations currently have under output-based schemes to deliver electricity to the grid even in periods of low demand. These schemes also provide investors with a more predictable income flow. However, to be successful, the regulation of capacity supply – currently designed for flexible power plants – needs to accommodate the specific production patterns of variable renewable energy installations. This paper examines ways to overcome this challenge in Russia and provides more general conclusions on the complex interaction between capacity markets and renewable energy investments.

Suggested Citation

  • Boute, Anatole, 2012. "Promoting renewable energy through capacity markets: An analysis of the Russian support scheme," Energy Policy, Elsevier, vol. 46(C), pages 68-77.
  • Handle: RePEc:eee:enepol:v:46:y:2012:i:c:p:68-77
    DOI: 10.1016/j.enpol.2012.03.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512002315
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.03.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Walter Vergara & Alejandro Deeb & Natsuko Toba & Peter Cramton & Irene Leino, 2010. "Wind Energy in Colombia : A Framework for Market Entry," World Bank Publications - Books, The World Bank Group, number 2493, December.
    2. Engoian, Alda, 2006. "Industrial and institutional restructuring of the Russian electricity sector: Status and issues," Energy Policy, Elsevier, vol. 34(17), pages 3233-3244, November.
    3. Johnston, Angus & Kavali, Amalia & Neuhoff, Karsten, 2008. "Take-or-pay contracts for renewables deployment," Energy Policy, Elsevier, vol. 36(7), pages 2481-2503, July.
    4. Jean-Philippe Bonardi & Santiago Urbiztondo & Bertrand V. Quelin, 2009. "The political economy of international regulatory convergence in public utilities," International Journal of Management and Network Economics, Inderscience Enterprises Ltd, vol. 1(2), pages 232-256.
    5. Martins, Fernando Ramos & Pereira, Enio Bueno, 2011. "Enhancing information for solar and wind energy technology deployment in Brazil," Energy Policy, Elsevier, vol. 39(7), pages 4378-4390, July.
    6. Batlle, Carlos & Pérez-Arriaga, Ignacio J., 2008. "Design criteria for implementing a capacity mechanism in deregulated electricity markets," Utilities Policy, Elsevier, vol. 16(3), pages 184-193, September.
    7. Paul L. Joskow, 2011. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," American Economic Review, American Economic Association, vol. 101(3), pages 238-241, May.
    8. Moreno, R. & Barroso, L.A. & Rudnick, H. & Mocarquer, S. & Bezerra, B., 2010. "Auction approaches of long-term contracts to ensure generation investment in electricity markets: Lessons from the Brazilian and Chilean experiences," Energy Policy, Elsevier, vol. 38(10), pages 5758-5769, October.
    9. Boccard, Nicolas, 2009. "Capacity factor of wind power realized values vs. estimates," Energy Policy, Elsevier, vol. 37(7), pages 2679-2688, July.
    10. Finon, Dominique & Pignon, Virginie, 2008. "Electricity and long-term capacity adequacy: The quest for regulatory mechanism compatible with electricity market," Utilities Policy, Elsevier, vol. 16(3), pages 143-158, September.
    11. Luiz T. A. Maurer & Luiz A. Barroso, 2011. "Electricity Auctions : An Overview of Efficient Practices," World Bank Publications - Books, The World Bank Group, number 2346, December.
    12. Joan Canton & Åsa Johannesson Lindén, 2010. "Support schemes for renewable electricity in the EU," European Economy - Economic Papers 2008 - 2015 408, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    13. Dominique Finon & Virginie Pignon, 2008. "Electricity and long-term capacity adequacy: The quest for regulatory mechanism compatible with electricity market," Post-Print hal-00716312, HAL.
    14. Sener, Adil Caner, 0. "Redefining Renewable Portfolio Standards: The Value of Installed Renewable Capacity," The Electricity Journal, Elsevier, vol. 24(1), pages 14-20, January.
    15. De Vries, Laurens J., 2007. "Generation adequacy: Helping the market do its job," Utilities Policy, Elsevier, vol. 15(1), pages 20-35, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastian Schäfer & Lisa Schulten, 2015. "Efficient Promotion of Renewable Energy with Reverse Auctions," MAGKS Papers on Economics 201520, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    2. Wang, Richard & Hsu, Shu-Chien & Zheng, Saina & Chen, Jieh-Haur & Li, Xuran Ivan, 2020. "Renewable energy microgrids: Economic evaluation and decision making for government policies to contribute to affordable and clean energy," Applied Energy, Elsevier, vol. 274(C).
    3. Meus, Jelle & De Vits, Sarah & S'heeren, Nele & Delarue, Erik & Proost, Stef, 2021. "Renewable electricity support in perfect markets: Economic incentives under diverse subsidy instruments," Energy Economics, Elsevier, vol. 94(C).
    4. Pahle, Michael & Schill, Wolf-Peter & Gambardella, Christian & Tietjen, Oliver, 2016. "Renewable Energy Support, Negative Prices, and Real-time Pricing," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 37, pages 147-169.
    5. Boute, Anatole & Willems, Patrick, 2012. "RUSTEC: Greening Europe's energy supply by developing Russia's renewable energy potential," Energy Policy, Elsevier, vol. 51(C), pages 618-629.
    6. Levin, Todd & Botterud, Audun, 2015. "Electricity market design for generator revenue sufficiency with increased variable generation," Energy Policy, Elsevier, vol. 87(C), pages 392-406.
    7. Smeets, Niels, 2017. "Similar goals, divergent motives. The enabling and constraining factors of Russia's capacity-based renewable energy support scheme," Energy Policy, Elsevier, vol. 101(C), pages 138-149.
    8. Alexander N. Alekseev & Aleksei V. Bogoviz & Ludmila P. Goncharenko & Sergey A. Sybachin, 2019. "A Critical Review of Russia s Energy Strategy in the Period until 2035," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 95-102.
    9. Vidadili, Nurtaj & Suleymanov, Elchin & Bulut, Cihan & Mahmudlu, Ceyhun, 2017. "Transition to renewable energy and sustainable energy development in Azerbaijan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1153-1161.
    10. Kozlova, Mariia & Fleten, Stein-Erik & Hagspiel, Verena, 2019. "Investment timing and capacity choice under rate-of-return regulation for renewable energy support," Energy, Elsevier, vol. 174(C), pages 591-601.
    11. Simona-Vasilica Oprea & Adela Bâra, 2017. "Analyses of Wind and Photovoltaic Energy Integration from the Promoting Scheme Point of View: Study Case of Romania," Energies, MDPI, vol. 10(12), pages 1-16, December.
    12. Banshwar, Anuj & Sharma, Naveen Kumar & Sood, Yog Raj & Shrivastava, Rajnish, 2018. "An international experience of technical and economic aspects of ancillary services in deregulated power industry: Lessons for emerging BRIC electricity markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 774-801.
    13. Kozlova, Mariia & Collan, Mikael, 2016. "Modeling the effects of the new Russian capacity mechanism on renewable energy investments," Energy Policy, Elsevier, vol. 95(C), pages 350-360.
    14. P. Fabbri & A. Ninni, 2015. "Environmental Problems and Development Policies for Renewable Energy in BRIC Countries," Economics Department Working Papers 2015-EP02, Department of Economics, Parma University (Italy).
    15. Salah, Florian & Flath, Christoph M. & Schuller, Alexander & Will, Christian & Weinhardt, Christof, 2017. "Morphological analysis of energy services: Paving the way to quality differentiation in the power sector," Energy Policy, Elsevier, vol. 106(C), pages 614-624.
    16. Kozlova, Mariia & Collan, Mikael, 2020. "Renewable energy investment attractiveness: Enabling multi-criteria cross-regional analysis from the investors’ perspective," Renewable Energy, Elsevier, vol. 150(C), pages 382-400.
    17. Vasileva, Evgeniia & Viljainen, Satu & Sulamaa, Pekka & Kuleshov, Dmitry, 2015. "RES support in Russia: Impact on capacity and electricity market prices," Renewable Energy, Elsevier, vol. 76(C), pages 82-90.
    18. Boute, Anatole & Zhikharev, Alexey, 2019. "Vested interests as driver of the clean energy transition: Evidence from Russia's solar energy policy," Energy Policy, Elsevier, vol. 133(C).
    19. Svetlana Balashova & Svetlana Ratner & Konstantin Gomonov & Andrey Berezin, 2020. "Modeling Consumer and Industry Reaction to Renewable Support Schemes: Empirical Evidence from the USA and Applications for Russia," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 158-167.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    2. Simshauser, Paul, 2019. "Missing money, missing policy and Resource Adequacy in Australia's National Electricity Market," Utilities Policy, Elsevier, vol. 60(C), pages 1-1.
    3. Dominique Finon & Fabien Roques, 2013. "European Electricity Market Reforms: The "Visible Hand" of Public Coordination," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    4. Simshauser, Paul, 2018. "On intermittent renewable generation & the stability of Australia's National Electricity Market," Energy Economics, Elsevier, vol. 72(C), pages 1-19.
    5. Heidarizadeh, Mohammad & Ahmadian, Mohammad, 2019. "Capacity certificate mechanism: A step forward toward a market based generation capacity incentive," Energy, Elsevier, vol. 172(C), pages 45-56.
    6. de Vries, Laurens & Heijnen, Petra, 2008. "The impact of electricity market design upon investment under uncertainty: The effectiveness of capacity mechanisms," Utilities Policy, Elsevier, vol. 16(3), pages 215-227, September.
    7. Roques, Fabien & Finon, Dominique, 2017. "Adapting electricity markets to decarbonisation and security of supply objectives: Toward a hybrid regime?," Energy Policy, Elsevier, vol. 105(C), pages 584-596.
    8. Sakellaris, Kostis, 2009. "The Greek Capacity Adequacy Mechanism: Design, Incentives, Strategic Behavior and Regulatory Remedies," MPRA Paper 24642, University Library of Munich, Germany.
    9. Elberg, Christina, 2014. "Cross-Border Effects of Capacity Mechanisms in Electricity Markets," EWI Working Papers 2014-11, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    10. Simshauser, Paul, 2022. "Rooftop solar PV and the peak load problem in the NEM's Queensland region," Energy Economics, Elsevier, vol. 109(C).
    11. Foley, A.M. & Ó Gallachóir, B.P. & McKeogh, E.J. & Milborrow, D. & Leahy, P.G., 2013. "Addressing the technical and market challenges to high wind power integration in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 692-703.
    12. Sandsmark, Maria, 2009. "A regional energy paradox--the case of Central Norway," Energy Policy, Elsevier, vol. 37(11), pages 4549-4556, November.
    13. Cepeda, Mauricio & Saguan, Marcelo & Finon, Dominique & Pignon, Virginie, 2009. "Generation adequacy and transmission interconnection in regional electricity markets," Energy Policy, Elsevier, vol. 37(12), pages 5612-5622, December.
    14. Simshauser, Paul, 2020. "Merchant renewables and the valuation of peaking plant in energy-only markets," Energy Economics, Elsevier, vol. 91(C).
    15. John J. García & Santiago Arango Tamayo & Andrés F. Ortiz Rico, 2015. "Impacto de la regulación en la eficiencia asignativa del mercado spot eléctrico colombiano," Documentos de Trabajo CIEF 13313, Universidad EAFIT.
    16. Nagl, Stephan & Fürsch, Michaela & Paulus, Moritz & Richter, Jan & Trüby, Johannes & Lindenberger, Dietmar, 2011. "Energy policy scenarios to reach challenging climate protection targets in the German electricity sector until 2050," Utilities Policy, Elsevier, vol. 19(3), pages 185-192.
    17. Osorio, Sebastian & van Ackere, Ann & Larsen, Erik R., 2017. "Interdependencies in security of electricity supply," Energy, Elsevier, vol. 135(C), pages 598-609.
    18. Wolfgang Buchholz & Jonas Frank & Hans-Dieter Karl & Johannes Pfeiffer & Karen Pittel & Ursula Triebswetter & Jochen Habermann & Wolfgang Mauch & Thomas Staudacher, 2012. "Die Zukunft der Energiemärkte: Ökonomische Analyse und Bewertung von Potenzialen und Handlungsmöglichkeiten," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 57.
    19. Mastropietro, Paolo & Herrero, Ignacio & Rodilla, Pablo & Batlle, Carlos, 2016. "A model-based analysis on the impact of explicit penalty schemes in capacity mechanisms," Applied Energy, Elsevier, vol. 168(C), pages 406-417.
    20. Jacopo Torriti & Philipp Grunewald, 2014. "Demand Side Response: Patterns in Europe and Future Policy Perspectives under Capacity Mechanisms," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:46:y:2012:i:c:p:68-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.