IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v46y2012icp193-202.html
   My bibliography  Save this article

A method for estimating security of electricity supply from intermittent sources: Scenarios for Germany until 203011The paper is based on a study of the Institute of Energy Economics at the University of Cologne, funded by the German Federal Ministry of Economics and Technology (BMWI) which assessed German electricity supply security in the short- and mid-term. We thank two anonymous reviewers for their comments

Author

Listed:
  • Grave, Katharina
  • Paulus, Moritz
  • Lindenberger, Dietmar

Abstract

In this paper, we develop a methodology for deriving a consistent measure for supply adequacy in the power generation sector. We especially consider the secured generation capacity of intermittent renewable energy sources such as wind. Availability of conventional power plants is estimated through stochastic convolution of unscheduled non-usabilities. We employ our methodology to measure supply security in Germany until 2030. A detailed market analysis of power plants that are currently being built or planned provides support to our analysis for the short term. For the long term, we rely on a large-scale dispatch and investment model of the European power sector to account for the embedding of the German electricity sector in the European market. We analyze two scenarios: one with prolongation of nuclear power plants and one with a nuclear phase-out. Our results show that, even though intermittent renewables only provide very limited secured generation capacity, security of electricity supply in Germany can be assured until 2015. In the long term, the need for backup capacity for renewable energy sources increases as well as the need for electricity imports.

Suggested Citation

  • Grave, Katharina & Paulus, Moritz & Lindenberger, Dietmar, 2012. "A method for estimating security of electricity supply from intermittent sources: Scenarios for Germany until 203011The paper is based on a study of the Institute of Energy Economics at the University," Energy Policy, Elsevier, vol. 46(C), pages 193-202.
  • Handle: RePEc:eee:enepol:v:46:y:2012:i:c:p:193-202
    DOI: 10.1016/j.enpol.2012.03.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512002558
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.03.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicolosi, S., 2010. "Wind power integration, negative prices and power system flexibility - An empirical analysis of extreme events in Germany," MPRA Paper 31834, University Library of Munich, Germany.
    2. Paulus, Moritz & Trüby, Johannes, 2011. "Coal lumps vs. electrons: How do Chinese bulk energy transport decisions affect the global steam coal market?," Energy Economics, Elsevier, vol. 33(6), pages 1127-1137.
    3. MacCormack, John & Hollis, Aidan & Zareipour, Hamidreza & Rosehart, William, 2010. "The large-scale integration of wind generation: Impacts on price, reliability and dispatchable conventional suppliers," Energy Policy, Elsevier, vol. 38(7), pages 3837-3846, July.
    4. Grothe, Oliver & Schnieders, Julius, 2011. "Spatial Dependence in Wind and Optimal Wind Power Allocation: A Copula Based Analysis," EWI Working Papers 2011-5, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    5. Batlle, C. & Rodilla, P., 2010. "A critical assessment of the different approaches aimed to secure electricity generation supply," Energy Policy, Elsevier, vol. 38(11), pages 7169-7179, November.
    6. Roques, Fabien A., 2008. "Market design for generation adequacy: Healing causes rather than symptoms," Utilities Policy, Elsevier, vol. 16(3), pages 171-183, September.
    7. Grothe, Oliver & Schnieders, Julius, 2011. "Spatial dependence in wind and optimal wind power allocation: A copula-based analysis," Energy Policy, Elsevier, vol. 39(9), pages 4742-4754, September.
    8. Nicolosi, Marco, 2010. "Wind power integration and power system flexibility-An empirical analysis of extreme events in Germany under the new negative price regime," Energy Policy, Elsevier, vol. 38(11), pages 7257-7268, November.
    9. Finon, Dominique & Pignon, Virginie, 2008. "Electricity and long-term capacity adequacy: The quest for regulatory mechanism compatible with electricity market," Utilities Policy, Elsevier, vol. 16(3), pages 143-158, September.
    10. Dominique Finon & Virginie Pignon, 2008. "Electricity and long-term capacity adequacy: The quest for regulatory mechanism compatible with electricity market," Post-Print hal-00716312, HAL.
    11. Weigt, Hannes, 2009. "Germany's wind energy: The potential for fossil capacity replacement and cost saving," Applied Energy, Elsevier, vol. 86(10), pages 1857-1863, October.
    12. Paulus, Moritz & Borggrefe, Frieder, 2011. "The potential of demand-side management in energy-intensive industries for electricity markets in Germany," Applied Energy, Elsevier, vol. 88(2), pages 432-441, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paulus, Moritz & Grave, Katharina & Lindenberger, Dietmar, 2011. "A methodology to estimate security of supply in electricity generation: results for Germany until 2030 given a high level of intermittent electricity feed-in," EWI Working Papers 2011-10, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    2. Dominique Finon & Fabien Roques, 2013. "European Electricity Market Reforms: The "Visible Hand" of Public Coordination," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    3. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    4. Simshauser, Paul, 2022. "Rooftop solar PV and the peak load problem in the NEM's Queensland region," Energy Economics, Elsevier, vol. 109(C).
    5. Rious, Vincent & Perez, Yannick & Roques, Fabien, 2015. "Which electricity market design to encourage the development of demand response?," Economic Analysis and Policy, Elsevier, vol. 48(C), pages 128-138.
    6. Gürtler, Marc & Paulsen, Thomas, 2018. "The effect of wind and solar power forecasts on day-ahead and intraday electricity prices in Germany," Energy Economics, Elsevier, vol. 75(C), pages 150-162.
    7. Simshauser, Paul, 2019. "Missing money, missing policy and Resource Adequacy in Australia's National Electricity Market," Utilities Policy, Elsevier, vol. 60(C), pages 1-1.
    8. Simshauser, Paul, 2020. "Merchant renewables and the valuation of peaking plant in energy-only markets," Energy Economics, Elsevier, vol. 91(C).
    9. Brijs, Tom & De Vos, Kristof & De Jonghe, Cedric & Belmans, Ronnie, 2015. "Statistical analysis of negative prices in European balancing markets," Renewable Energy, Elsevier, vol. 80(C), pages 53-60.
    10. Arjmand, Reza & Rahimiyan, Morteza, 2016. "Impact of spatio-temporal correlation of wind production on clearing outcomes of a competitive pool market," Renewable Energy, Elsevier, vol. 86(C), pages 216-227.
    11. Simshauser, Paul, 2018. "On intermittent renewable generation & the stability of Australia's National Electricity Market," Energy Economics, Elsevier, vol. 72(C), pages 1-19.
    12. Keppler, Jan Horst, 2017. "Rationales for capacity remuneration mechanisms: Security of supply externalities and asymmetric investment incentives," Energy Policy, Elsevier, vol. 105(C), pages 562-570.
    13. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    14. Jägemann, Cosima, 2014. "An illustrative note on the system price effect of wind and solar power - The German case," EWI Working Papers 2014-10, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    15. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    16. S. Oliveira, Fernando & William-Rioux, Bertrand & Pierru, Axel, 2023. "Capacity expansion in liberalized electricity markets with locational pricing and renewable energy investments," Energy Economics, Elsevier, vol. 127(PB).
    17. Juha Teirilä and Robert A. Ritz, 2019. "Strategic Behaviour in a Capacity Market? The New Irish Electricity Market Design," The Energy Journal, International Association for Energy Economics, vol. 0(The New E).
    18. Bublitz, Andreas & Keles, Dogan & Zimmermann, Florian & Fraunholz, Christoph & Fichtner, Wolf, 2018. "A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms," Working Paper Series in Production and Energy 27, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    19. Arango, Santiago & Castañeda, Jaime A. & Larsen, Erik R., 2013. "Mothballing in power markets: An experimental study," Energy Economics, Elsevier, vol. 36(C), pages 125-134.
    20. Crampes, Claude & Salant, David, 2018. "A multi-regional model of electric resource adequacy," TSE Working Papers 18-877, Toulouse School of Economics (TSE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:46:y:2012:i:c:p:193-202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.