IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v43y2012icp456-465.html
   My bibliography  Save this article

SO2 pollution of heavy oil-fired steam power plants in Iran

Author

Listed:
  • Nazari, S.
  • Shahhoseini, O.
  • Sohrabi-Kashani, A.
  • Davari, S.
  • Sahabi, H.
  • Rezaeian, A.

Abstract

Steam power plants using heavy oil provided about 17.4%, equivalent to 35.49TWh, of electricity in Iran in 2007. However, having 1.55–3.5 weight percentage of sulfur, heavy oil produces SO2 pollutant. Utilization of Flue Gas Desulfurization systems (FGD) in Iran's steam power plants is not common and thereby, this pollutant is dispersed in the atmosphere easily. In 2007, the average emission factor of SO2 pollutant for steam power plants was 15.27g/kWh, which means regarding the amount of electricity generated by steam power plants using heavy oil, 541,000Mg of this pollutant was produced. In this study, mass distribution of SO2 in terms of Mg/yr is considered and dispersion of this pollutant in each of the 16 steam power plants under study is modeled using Atmospheric Dispersion Modeling System (ADMS). Details of this study are demonstrated using Geographical Information System (GIS) software, ArcGIS. Finally, the average emission factor of SO2 and the emission of it in Iran's steam power plants as well as SO2 emission reduction programs of this country are compared with their alternatives in Turkey and China.

Suggested Citation

  • Nazari, S. & Shahhoseini, O. & Sohrabi-Kashani, A. & Davari, S. & Sahabi, H. & Rezaeian, A., 2012. "SO2 pollution of heavy oil-fired steam power plants in Iran," Energy Policy, Elsevier, vol. 43(C), pages 456-465.
  • Handle: RePEc:eee:enepol:v:43:y:2012:i:c:p:456-465
    DOI: 10.1016/j.enpol.2012.01.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512000663
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.01.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaminski, Jacek, 2003. "Technologies and costs of SO2-emissions reduction for the energy sector," Applied Energy, Elsevier, vol. 75(3-4), pages 165-172, July.
    2. Say, Nuriye Peker, 2006. "Lignite-fired thermal power plants and SO2 pollution in Turkey," Energy Policy, Elsevier, vol. 34(17), pages 2690-2701, November.
    3. Islas, Jorge & Grande, Genice, 2008. "Abatement costs of SO2-control options in the Mexican electric-power sector," Applied Energy, Elsevier, vol. 85(2-3), pages 80-94, February.
    4. Mahlia, T.M.I, 2002. "Emissions from electricity generation in Malaysia," Renewable Energy, Elsevier, vol. 27(2), pages 293-300.
    5. Vardar, Nurten & Yumurtaci, Zehra, 2010. "Emissions estimation for lignite-fired power plants in Turkey," Energy Policy, Elsevier, vol. 38(1), pages 243-252, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reyhani, Hamed Akbarpour & Meratizaman, Mousa & Ebrahimi, Armin & Pourali, Omid & Amidpour, Majid, 2016. "Thermodynamic and economic optimization of SOFC-GT and its cogeneration opportunities using generated syngas from heavy fuel oil gasification," Energy, Elsevier, vol. 107(C), pages 141-164.
    2. Aleksandras Chlebnikovas & Dainius Paliulis & Artūras Kilikevičius & Jaroslaw Selech & Jonas Matijošius & Kristina Kilikevičienė & Darius Vainorius, 2021. "Possibilities and Generated Emissions of Using Wood and Lignin Biofuel for Heat Production," Energies, MDPI, vol. 14(24), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Kangkang & Yu, Hai & Qi, Guojie & Feron, Paul & Tade, Moses & Yu, Jingwen & Wang, Shujuan, 2015. "Rate-based modelling of combined SO2 removal and NH3 recycling integrated with an aqueous NH3-based CO2 capture process," Applied Energy, Elsevier, vol. 148(C), pages 66-77.
    2. Gao, Xiang & Ding, Honglei & Du, Zhen & Wu, Zuliang & Fang, Mengxiang & Luo, Zhongyang & Cen, Kefa, 2010. "Gas-liquid absorption reaction between (NH4)2SO3 solution and SO2 for ammonia-based wet flue gas desulfurization," Applied Energy, Elsevier, vol. 87(8), pages 2647-2651, August.
    3. Sugathan, Anish & Bhangale, Ritesh & Kansal, Vishal & Hulke, Unmil, 2018. "How can Indian power plants cost-effectively meet the new sulfur emission standards? Policy evaluation using marginal abatement cost-curves," Energy Policy, Elsevier, vol. 121(C), pages 124-137.
    4. Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H., 2013. "Life cycle assessment of rice straw co-firing with coal power generation in Malaysia," Energy, Elsevier, vol. 57(C), pages 284-294.
    5. Chih Chen, 2015. "Assessing the Pollutant Abatement Cost of Greenhouse Gas Emission Regulation: A Case Study of Taiwan’s Freeway Bus Service Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(4), pages 477-495, August.
    6. Jing, Ong Li & Bashir, Mohammed J.K. & Kao, Jehng-Jung, 2015. "Solar radiation based benefit and cost evaluation for solar water heater expansion in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 328-335.
    7. Toklu, E., 2013. "Overview of potential and utilization of renewable energy sources in Turkey," Renewable Energy, Elsevier, vol. 50(C), pages 456-463.
    8. Kasikowski, Tomasz & Buczkowski, Roman & Cichosz, Marcin & Lemanowska, Eliza, 2007. "Combined distiller waste utilisation and combustion gases desulphurisation method," Resources, Conservation & Recycling, Elsevier, vol. 51(3), pages 665-690.
    9. Jindal, Abhinav & Nilakantan, Rahul, 2021. "Falling efficiency levels of Indian coal-fired power plants: A slacks-based analysis," Energy Economics, Elsevier, vol. 93(C).
    10. Akpan, P.U. & Fuls, W.F., 2021. "Cycling of coal fired power plants: A generic CO2 emissions factor model for predicting CO2 emissions," Energy, Elsevier, vol. 214(C).
    11. Nur Izzah Hamna A. Aziz & Marlia M. Hanafiah & Shabbir H. Gheewala & Haikal Ismail, 2020. "Bioenergy for a Cleaner Future: A Case Study of Sustainable Biogas Supply Chain in the Malaysian Energy Sector," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    12. Saidur, R. & Atabani, A.E. & Mekhilef, S., 2011. "A review on electrical and thermal energy for industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2073-2086, May.
    13. Kaminski, Jacek & KudeLko, Mariusz, 2010. "The prospects for hard coal as a fuel for the Polish power sector," Energy Policy, Elsevier, vol. 38(12), pages 7939-7950, December.
    14. Saidur, R. & Rahim, N.A. & Ping, H.W. & Jahirul, M.I. & Mekhilef, S. & Masjuki, H.H., 2009. "Energy and emission analysis for industrial motors in Malaysia," Energy Policy, Elsevier, vol. 37(9), pages 3650-3658, September.
    15. Halkos, George & Tzeremes, Panagiotis, 2015. "Scenario analysis on greenhouse gas emissions reduction in Southeast Balkans' energy system," MPRA Paper 65280, University Library of Munich, Germany.
    16. Khorasanizadeh, Hasti & Parkkinen, Jussi & Parthiban, Rajendran & David Moore, Joel, 2015. "Energy and economic benefits of LED adoption in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 629-637.
    17. Heidel, Barna & Hilber, Melanie & Scheffknecht, Günter, 2014. "Impact of additives for enhanced sulfur dioxide removal on re-emissions of mercury in wet flue gas desulfurization," Applied Energy, Elsevier, vol. 114(C), pages 485-491.
    18. Nurrohim, Agus & Sakugawa, Hiroshi, 2004. "A fuel-based inventory of NOx and SO2 emissions from manufacturing industries in Hiroshima Prefecture, Japan," Applied Energy, Elsevier, vol. 78(4), pages 355-369, August.
    19. Kılıç, Osman & Acarkan, Bora & Ay, Selim, 2013. "FGD investments as part of energy policy: A case study for Turkey," Energy Policy, Elsevier, vol. 62(C), pages 1461-1469.
    20. Xiaohang Wang & Wentong Chong & Kokhoe Wong & Saihin Lai & Liphuat Saw & Xianbo Xiang & Chin-Tsan Wang, 2019. "Preliminary Techno–Environment–Economic Evaluation of an Innovative Hybrid Renewable Energy Harvester System for Residential Application," Energies, MDPI, vol. 12(8), pages 1-28, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:43:y:2012:i:c:p:456-465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.