IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v42y2012icp551-556.html
   My bibliography  Save this article

Application of the IPCC model to a Brazilian landfill: First results

Author

Listed:
  • Penteado, Roger
  • Cavalli, Massimo
  • Magnano, Enrico
  • Chiampo, Fulvia

Abstract

The Intergovernmental Panel on Climate Change gave a methodology to estimate the methane emissions from Municipal Solid Wastes landfills, based on a First Order Decay (FOD) model that assumes biodegradation kinetics depending on the type of wastes. This model can be used to estimate both the National greenhouse gas emissions in the industrialized countries as well as the reductions of these emissions in the developing ones when the Clean Development Mechanism, as defined by the Kyoto Protocol, is implemented. In this paper, the FOD model has been use to evaluate the biogas flow rates emitted by a Brazilian landfill and the results have been compared to the extracted ones: some first results can be useful to evidence the weight of key parameters and do a correct use of the model.

Suggested Citation

  • Penteado, Roger & Cavalli, Massimo & Magnano, Enrico & Chiampo, Fulvia, 2012. "Application of the IPCC model to a Brazilian landfill: First results," Energy Policy, Elsevier, vol. 42(C), pages 551-556.
  • Handle: RePEc:eee:enepol:v:42:y:2012:i:c:p:551-556
    DOI: 10.1016/j.enpol.2011.12.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511010287
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2011.12.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seres, Stephen & Haites, Erik & Murphy, Kevin, 2009. "Analysis of technology transfer in CDM projects: An update," Energy Policy, Elsevier, vol. 37(11), pages 4919-4926, November.
    2. Schneider, Malte & Holzer, Andreas & Hoffmann, Volker H., 2008. "Understanding the CDM's contribution to technology transfer," Energy Policy, Elsevier, vol. 36(8), pages 2920-2928, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mambeli Barros, Regina & Tiago Filho, Geraldo Lúcio & da Silva, Tiago Rodrigo, 2014. "The electric energy potential of landfill biogas in Brazil," Energy Policy, Elsevier, vol. 65(C), pages 150-164.
    2. Zuberi, M. Jibran S. & Ali, Shazia F., 2015. "Greenhouse effect reduction by recovering energy from waste landfills in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 117-131.
    3. de Souza, Sergio Alencar & Lamas, Wendell de Queiroz, 2014. "Thermoeconomic and ecological analysis applied to heating industrial process in chemical reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 96-107.
    4. Ruoso, Ana Cristina & Dalla Nora, Macklini & Siluk, Julio Cezar Mairesse & Ribeiro, José Luis Duarte, 2022. "The impact of landfill operation factors on improving biogas generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Fei, Fan & Wen, Zongguo & De Clercq, Djavan, 2019. "Spatio-temporal estimation of landfill gas energy potential: A case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 217-226.
    6. Zhou, Ziqiao & Zhang, Lin, 2022. "Sustainable waste management and waste to energy: Valuation of energy potential of MSW in the Greater Bay Area of China," Energy Policy, Elsevier, vol. 163(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mori-Clement, Yadira, 2019. "Impacts of CDM projects on sustainable development: Improving living standards across Brazilian municipalities?," World Development, Elsevier, vol. 113(C), pages 222-236.
    2. Miyamoto, Mai & Takeuchi, Kenji, 2019. "Climate agreement and technology diffusion: Impact of the Kyoto Protocol on international patent applications for renewable energy technologies," Energy Policy, Elsevier, vol. 129(C), pages 1331-1338.
    3. Pécastaing, Nicolas, 2013. "L’impact du mécanisme de développement propre (MDP) sur le développement « durable » : le cas du Pérou," L'Actualité Economique, Société Canadienne de Science Economique, vol. 89(1), pages 39-56, Mars.
    4. Kang, Moon Jung & Park, Jihyoun, 2013. "Analysis of the partnership network in the clean development mechanism," Energy Policy, Elsevier, vol. 52(C), pages 543-553.
    5. Tian Tang & David Popp, 2014. "The Learning Process and Technological Change in Wind Power: Evidence from China's CDM Wind Projects," NBER Working Papers 19921, National Bureau of Economic Research, Inc.
    6. Tian Tang & David Popp, 2014. "The Learning Process and Technological Change in Wind Power: Evidence from China's CDM Wind Projects," CESifo Working Paper Series 4705, CESifo.
    7. Nils Simon & Toshi H. Arimura & Minoru Morita & Akihisa Kuriyama & Kazuhisa Koakutsu, 2017. "Technology transfer and cost structure of clean development mechanism projects: an empirical study of Indian cases," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 19(3), pages 609-633, July.
    8. Pauline Lacour & Jean-Christophe Simon, 2012. "Les avancées du Mécanisme de Développement Propre : une étape décisive vers un développement "décarboné" au Sud ?," Post-Print halshs-00713067, HAL.
    9. Bortoletto, Wagner Wilson & Pacagnella Junior, Antonio Carlos & Cabello, Otavio Gomes, 2023. "Exploring the scientific literature on clean development mechanisms: A bibliometric analysis," Energy Policy, Elsevier, vol. 183(C).
    10. James Haselip & Ulrich Hansen & Daniel Puig & Sara Trærup & Subash Dhar, 2015. "Governance, enabling frameworks and policies for the transfer and diffusion of low carbon and climate adaptation technologies in developing countries," Climatic Change, Springer, vol. 131(3), pages 363-370, August.
    11. Du, Yimeng & Takeuchi, Kenji, 2019. "Can climate mitigation help the poor? Measuring impacts of the CDM in rural China," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 178-197.
    12. Jingbo Cui & Zhenxuan Wang & Haishan Yu, 2022. "Can International Climate Cooperation Induce Knowledge Spillover to Developing Countries? Evidence from CDM," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 82(4), pages 923-951, August.
    13. De Cian, Enrica & Tavoni, Massimo, 2012. "Do technology externalities justify restrictions on emission permit trading?," Resource and Energy Economics, Elsevier, vol. 34(4), pages 624-646.
    14. Seres, Stephen & Haites, Erik & Murphy, Kevin, 2009. "Analysis of technology transfer in CDM projects: An update," Energy Policy, Elsevier, vol. 37(11), pages 4919-4926, November.
    15. Zhang, Yue-Jun & Sun, Ya-Fang & Huang, Junling, 2018. "Energy efficiency, carbon emission performance, and technology gaps: Evidence from CDM project investment," Energy Policy, Elsevier, vol. 115(C), pages 119-130.
    16. Khem Raj Dahal & Shiva Ch & ra Dhakal, "undated". "The Relative Efficiency of Organic Farming in Nepal," Working papers 105, The South Asian Network for Development and Environmental Economics.
    17. Valentina Bosetti & Enrica De Cian, 2013. "A Good Opening: The Key to Make the Most of Unilateral Climate Action," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(2), pages 255-276, October.
    18. Cui, Jingbo & Liu, Xi & Sun, Yongping & Yu, Haishan, 2020. "Can CDM projects trigger host countries’ innovation in renewable energy? Evidence of firm-level dataset from China," Energy Policy, Elsevier, vol. 139(C).
    19. Doranova, Asel & Costa, Ionara & Duysters, Geert, 2010. "Knowledge base determinants of technology sourcing in clean development mechanism projects," Energy Policy, Elsevier, vol. 38(10), pages 5550-5559, October.
    20. Valentina Bosetti & Melanie Heugues & Alessandro Tavoni, 2017. "Luring others into climate action: coalition formation games with threshold and spillover effects," Oxford Economic Papers, Oxford University Press, vol. 69(2), pages 410-431.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:42:y:2012:i:c:p:551-556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.