IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v42y2012icp191-200.html
   My bibliography  Save this article

Assessing offshore wind potential

Author

Listed:
  • Adelaja, Adesoji
  • McKeown, Charles
  • Calnin, Benjamin
  • Hailu, Yohannes

Abstract

Quantifying wind potential is a pivotal initial step in developing and articulating a state’s policies and strategies for offshore wind industry development. This is particularly important in the Great Lakes States where lessons from other offshore environments are not directly applicable. This paper presents the framework developed for conducting a preliminary assessment of offshore wind potential. Information on lake bathymetry and wind resources were combined in simulating alternative scenarios of technically feasible turbine construction depths and distance concerns by stakeholders. These yielded estimates of developable offshore wind areas and potential power generation. While concerns about the visibility of turbines from shore reduce the power that can be generated, engineering solutions that increase the depths at which turbines can be sited increase such potential power output. This paper discusses the costs associated with technical limitations on depth and the social costs related to public sentiments about distance from the shoreline, as well as the possible tradeoffs. The results point to a very large untapped energy resource in the Michigan’s Great Lakes, large enough to prompt policy action from the state government.

Suggested Citation

  • Adelaja, Adesoji & McKeown, Charles & Calnin, Benjamin & Hailu, Yohannes, 2012. "Assessing offshore wind potential," Energy Policy, Elsevier, vol. 42(C), pages 191-200.
  • Handle: RePEc:eee:enepol:v:42:y:2012:i:c:p:191-200
    DOI: 10.1016/j.enpol.2011.11.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511009700
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2011.11.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bishop, Ian D. & Miller, David R., 2007. "Visual assessment of off-shore wind turbines: The influence of distance, contrast, movement and social variables," Renewable Energy, Elsevier, vol. 32(5), pages 814-831.
    2. Adelaja, Soji & Shaw, Judy & Beyea, Wayne & Charles McKeown, J.D., 2010. "Renewable energy potential on brownfield sites: A case study of Michigan," Energy Policy, Elsevier, vol. 38(11), pages 7021-7030, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georgios Delagrammatikas & Spyridon Roukanas, 2023. "Offshore Wind Farm in the Southeast Aegean Sea and Energy Security," Energies, MDPI, vol. 16(13), pages 1-21, July.
    2. Dong, Cong & Huang, Guohe (Gordon) & Cheng, Guanhui, 2021. "Offshore wind can power Canada," Energy, Elsevier, vol. 236(C).
    3. Li, Jiale & Yu, Xiong (Bill), 2018. "Onshore and offshore wind energy potential assessment near Lake Erie shoreline: A spatial and temporal analysis," Energy, Elsevier, vol. 147(C), pages 1092-1107.
    4. Waewsak, Jompob & Landry, Mathieu & Gagnon, Yves, 2015. "Offshore wind power potential of the Gulf of Thailand," Renewable Energy, Elsevier, vol. 81(C), pages 609-626.
    5. Mekonnen, Addisu D. & Gorsevski, Pece V., 2015. "A web-based participatory GIS (PGIS) for offshore wind farm suitability within Lake Erie, Ohio," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 162-177.
    6. Zountouridou, E.I. & Kiokes, G.C. & Chakalis, S. & Georgilakis, P.S. & Hatziargyriou, N.D., 2015. "Offshore floating wind parks in the deep waters of Mediterranean Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 433-448.
    7. Jessica Kersey & Natalie D. Popovich & Amol A. Phadke, 2022. "Rapid battery cost declines accelerate the prospects of all-electric interregional container shipping," Nature Energy, Nature, vol. 7(7), pages 664-674, July.
    8. Rohan Zafar Butt & Syed Ali Abbas Kazmi & Mohammed Alghassab & Zafar A. Khan & Abdullah Altamimi & Muhammad Imran & Fahad F. Alruwaili, 2022. "Techno-Economic and Environmental Impact Analysis of Large-Scale Wind Farms Integration in Weak Transmission Grid from Mid-Career Repowering Perspective," Sustainability, MDPI, vol. 14(5), pages 1-31, February.
    9. Mohd Zin, Abdullah Asuhaimi B. & Pesaran H.A., Mahmoud & Khairuddin, Azhar B. & Jahanshaloo, Leila & Shariati, Omid, 2013. "An overview on doubly fed induction generators′ controls and contributions to wind based electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 692-708.
    10. Dhunny, A.Z. & Timmons, D.S. & Allam, Z. & Lollchund, M.R. & Cunden, T.S.M., 2020. "An economic assessment of near-shore wind farm development using a weather research forecast-based genetic algorithm model," Energy, Elsevier, vol. 201(C).
    11. Senthilkumar Subramanian & Chandramohan Sankaralingam & Rajvikram Madurai Elavarasan & Raghavendra Rajan Vijayaraghavan & Kannadasan Raju & Lucian Mihet-Popa, 2021. "An Evaluation on Wind Energy Potential Using Multi-Objective Optimization Based Non-Dominated Sorting Genetic Algorithm III," Sustainability, MDPI, vol. 13(1), pages 1-29, January.
    12. Dimitra G. Vagiona & Manos Kamilakis, 2018. "Sustainable Site Selection for Offshore Wind Farms in the South Aegean—Greece," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    13. Sylvester Stallone Pereira de Azevedo & Amaro Olimpio Pereira Junior & Neilton Fidelis da Silva & Renato Samuel Barbosa de Araújo & Antonio Aldísio Carlos Júnior, 2020. "Assessment of Offshore Wind Power Potential along the Brazilian Coast," Energies, MDPI, vol. 13(10), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sovacool, Benjamin K. & Hirsh, Richard F., 2008. "Island wind-hydrogen energy: A significant potential US resource," Renewable Energy, Elsevier, vol. 33(8), pages 1928-1935.
    2. Ho, Lip-Wah & Lie, Tek-Tjing & Leong, Paul TM & Clear, Tony, 2018. "Developing offshore wind farm siting criteria by using an international Delphi method," Energy Policy, Elsevier, vol. 113(C), pages 53-67.
    3. Tsoutsos, Theocharis & Tsouchlaraki, Androniki & Tsiropoulos, Manolis & Serpetsidakis, Michalis, 2009. "Visual impact evaluation of a wind park in a Greek island," Applied Energy, Elsevier, vol. 86(4), pages 546-553, April.
    4. David Rudolph & Claire Haggett & Mhairi Aitken, 2018. "Community benefits from offshore renewables: The relationship between different understandings of impact, community, and benefit," Environment and Planning C, , vol. 36(1), pages 92-117, February.
    5. Lean, Hooi Hooi & Smyth, Russell, 2013. "Are fluctuations in US production of renewable energy permanent or transitory?," Applied Energy, Elsevier, vol. 101(C), pages 483-488.
    6. Tabassum-Abbasi, & Premalatha, M. & Abbasi, Tasneem & Abbasi, S.A., 2014. "Wind energy: Increasing deployment, rising environmental concerns," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 270-288.
    7. Richards, Daniel R. & Warren, Philip H. & Moggridge, Helen L. & Maltby, Lorraine, 2015. "Spatial variation in the impact of dragonflies and debris on recreational ecosystem services in a floodplain wetland," Ecosystem Services, Elsevier, vol. 15(C), pages 113-121.
    8. Molina-Ruiz, José & Martínez-Sánchez, María José & Pérez-Sirvent, Carmen & Tudela-Serrano, Mari Luz & García Lorenzo, Mari Luz, 2011. "Developing and applying a GIS-assisted approach to evaluate visual impact in wind farms," Renewable Energy, Elsevier, vol. 36(3), pages 1125-1132.
    9. Lei Fu & Tiantian Zhu & Kai Zhu & Yiling Yang, 2019. "Condition Monitoring for the Roller Bearings of Wind Turbines under Variable Working Conditions Based on the Fisher Score and Permutation Entropy," Energies, MDPI, vol. 12(16), pages 1-20, August.
    10. Manchado, Cristina & Otero, César & Gómez-Jáuregui, Valentín & Arias, Rubén & Bruschi, Viola & Cendrero, Antonio, 2013. "Visibility analysis and visibility software for the optimisation of wind farm design," Renewable Energy, Elsevier, vol. 60(C), pages 388-401.
    11. Kaldellis, John K. & Zafirakis, D., 2011. "The wind energy (r)evolution: A short review of a long history," Renewable Energy, Elsevier, vol. 36(7), pages 1887-1901.
    12. Josef Navrátil & Stanislav Martinát & Tomáš Krejčí & Petr Klusáček & Richard J. Hewitt, 2021. "Conversion of Post-Socialist Agricultural Premises as a Chance for Renewable Energy Production. Photovoltaics or Biogas Plants?," Energies, MDPI, vol. 14(21), pages 1-21, November.
    13. Dimitropoulos, Alexandros & Kontoleon, Andreas, 2009. "Assessing the determinants of local acceptability of wind-farm investment: A choice experiment in the Greek Aegean Islands," Energy Policy, Elsevier, vol. 37(5), pages 1842-1854, May.
    14. Virtanen, E.A. & Lappalainen, J. & Nurmi, M. & Viitasalo, M. & Tikanmäki, M. & Heinonen, J. & Atlaskin, E. & Kallasvuo, M. & Tikkanen, H. & Moilanen, A., 2022. "Balancing profitability of energy production, societal impacts and biodiversity in offshore wind farm design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    15. Sunak, Yasin & Madlener, Reinhard, 2016. "The impact of wind farm visibility on property values: A spatial difference-in-differences analysis," Energy Economics, Elsevier, vol. 55(C), pages 79-91.
    16. Ladenburg, Jacob, 2010. "Attitudes towards offshore wind farms--The role of beach visits on attitude and demographic and attitude relations," Energy Policy, Elsevier, vol. 38(3), pages 1297-1304, March.
    17. Katsaprakakis, Dimitris Al., 2012. "A review of the environmental and human impacts from wind parks. A case study for the Prefecture of Lasithi, Crete," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2850-2863.
    18. Jones, Christopher R. & Richard Eiser, J., 2010. "Understanding 'local' opposition to wind development in the UK: How big is a backyard?," Energy Policy, Elsevier, vol. 38(6), pages 3106-3117, June.
    19. Westerberg, Vanja & Jacobsen, Jette Bredahl & Lifran, Robert, 2013. "The case for offshore wind farms, artificial reefs and sustainable tourism in the French mediterranean," Tourism Management, Elsevier, vol. 34(C), pages 172-183.
    20. Bishop, Ian D. & Stock, Christian, 2010. "Using collaborative virtual environments to plan wind energy installations," Renewable Energy, Elsevier, vol. 35(10), pages 2348-2355.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:42:y:2012:i:c:p:191-200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.