IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i9p5147-5158.html
   My bibliography  Save this article

Forecasting world and regional aviation jet fuel demands to the mid-term (2025)

Author

Listed:
  • Chèze, Benoît
  • Gastineau, Pascal
  • Chevallier, Julien

Abstract

This article provides jet fuel demand projections at the worldwide level and for eight geographical zones until 2025. Air traffic forecasts are performed using dynamic panel-data econometrics. Then, the conversion of air traffic projections into quantities of jet fuel is accomplished by using a complementary approach to the 'Traffic Efficiency' method developed previously by the UK Department of Trade and Industry to support the Intergovernmental Panel on Climate Change (IPCC, 1999). According to our main scenario, air traffic should increase by about 100% between 2008 and 2025 at the world level, corresponding to a yearly average growth rate of 4.7%. World jet fuel demand is expected to increase by about 38% during the same period, corresponding to a yearly average growth rate of 1.9% per year. According to these results, energy efficiency improvements allow reducing the effect of air traffic rise on the increase in jet fuel demand, but do not annihilate it. Jet fuel demand is thus unlikely to diminish unless there is a radical technological shift, or air travel demand is restricted.

Suggested Citation

  • Chèze, Benoît & Gastineau, Pascal & Chevallier, Julien, 2011. "Forecasting world and regional aviation jet fuel demands to the mid-term (2025)," Energy Policy, Elsevier, vol. 39(9), pages 5147-5158, September.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:9:p:5147-5158
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511004496
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mohammad Mazraati, 2010. "World aviation fuel demand outlook," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 34(1), pages 42-72, March.
    2. Dermot Gately, 1988. "Taking Off: The U.S. Demand for Air Travel and Jet Fuel," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 63-91.
    3. Nygren, Emma & Aleklett, Kjell & Höök, Mikael, 2009. "Aviation fuel and future oil production scenarios," Energy Policy, Elsevier, vol. 37(10), pages 4003-4010, October.
    4. Macintosh, Andrew & Wallace, Lailey, 2009. "International aviation emissions to 2025: Can emissions be stabilised without restricting demand?," Energy Policy, Elsevier, vol. 37(1), pages 264-273, January.
    5. Shaw, Shih-Lung & Lu, Feng & Chen, Jie & Zhou, Chenghu, 2009. "China’s airline consolidation and its effects on domestic airline networks and competition," Journal of Transport Geography, Elsevier, vol. 17(4), pages 293-305.
    6. Karen Mayor & Richard S. J. Tol, 2008. "Scenarios of Carbon Dioxide Emissions from Aviation," Papers WP244, Economic and Social Research Institute (ESRI).
    7. Vedantham, Anu & Oppenheimer, Michael, 1998. "Long-term scenarios for aviation: Demand and emissions of CO2 and NOx," Energy Policy, Elsevier, vol. 26(8), pages 625-641, July.
    8. Vespermann, Jan & Wald, Andreas & Gleich, Ronald, 2008. "Aviation growth in the Middle East – impacts on incumbent players and potential strategic reactions," Journal of Transport Geography, Elsevier, vol. 16(6), pages 388-394.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:dau:papers:123456789/6794 is not listed on IDEAS
    2. repec:dau:papers:123456789/6792 is not listed on IDEAS
    3. Benoit Chèze & Pascal Gastineau & Julien Chevallier, 2010. "Forecasting air traffic and corresponding jet-fuel demande until 2025," Working Papers hal-02489878, HAL.
    4. repec:dau:papers:123456789/9263 is not listed on IDEAS
    5. Benoit Cheze & Julien Chevallier & Pascal Gastineau, 2012. "Will technological progress be sufficient to effectively lead the air transport to a sustainable development in the mid-term (2025)?," Working Papers 1207, Chaire Economie du climat.
    6. repec:dau:papers:123456789/9262 is not listed on IDEAS
    7. Benoit Chèze & Pascal Gastineau & Julien Chevallier, 2011. "Air traffic energy efficiency differs from place to place: analysis of historical trends by geographical zones using a macro-level methodology," Working Papers hal-02474644, HAL.
    8. Benoît Chèze & Pascal Gastineau & Julien Chevallier, 2011. "Air traffic energy efficiency differs from place to place: New results from a macro-level approach," International Economics, CEPII research center, issue 126-127, pages 151-177.
    9. Benoît Chèze & Julien Chevallier & Pascal Gastineau, 2012. "Will technological progress be sufficient to stabilize CO2 emissions from air transport in the mid-term?," EconomiX Working Papers 2012-35, University of Paris Nanterre, EconomiX.
    10. Chai, Jian & Zhang, Zhong-Yu & Wang, Shou-Yang & Lai, Kin Keung & Liu, John, 2014. "Aviation fuel demand development in China," Energy Economics, Elsevier, vol. 46(C), pages 224-235.
    11. Vespermann, Jan & Wald, Andreas, 2011. "Much Ado about Nothing? – An analysis of economic impacts and ecologic effects of the EU-emission trading scheme in the aviation industry," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 1066-1076.
    12. Kai Wang & Chang Gan & Yan Ou & Haolong Liu, 2019. "Low-Carbon Behaviour Performance of Scenic Spots in a World Heritage Site," Sustainability, MDPI, vol. 11(13), pages 1-23, July.
    13. Benoît Chèze & Julien Chevallier & Pascal Gastineau, 2012. "Will technological progress be sufficient to stabilize CO2 emissions from air transport in the mid-term?," Working Papers hal-04141052, HAL.
    14. Yilmaz, Nadir & Atmanli, Alpaslan, 2017. "Sustainable alternative fuels in aviation," Energy, Elsevier, vol. 140(P2), pages 1378-1386.
    15. Jan Vespermann & Andreas Wittmer, 2011. "Financial, ecological and managerial impacts of emission trading schemes: the case of Lufthansa," Business Strategy and the Environment, Wiley Blackwell, vol. 20(3), pages 174-191, March.
    16. González, Rodrigo & Hosoda, Eiji B., 2016. "Environmental impact of aircraft emissions and aviation fuel tax in Japan," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 234-240.
    17. Zaman, Khalid & Shahbaz, Muhammad & Loganathan, Nanthakumar & Raza, Syed Ali, 2016. "Tourism development, energy consumption and Environmental Kuznets Curve: Trivariate analysis in the panel of developed and developing countries," Tourism Management, Elsevier, vol. 54(C), pages 275-283.
    18. Schafer, Andreas & Victor, David G., 2000. "The future mobility of the world population," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(3), pages 171-205, April.
    19. Liu, Xiao & Zhou, Dequn & Zhou, Peng & Wang, Qunwei, 2017. "What drives CO2 emissions from China’s civil aviation? An exploration using a new generalized PDA method," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 30-45.
    20. Koo, Tay T.R. & Lohmann, Gui, 2013. "The spatial effects of domestic aviation deregulation: a comparative study of Australian and Brazilian seat capacity, 1986–2010," Journal of Transport Geography, Elsevier, vol. 29(C), pages 52-62.
    21. Al-faris, Abdul-razak F., 1997. "Demand for oil products in the GCC countries," Energy Policy, Elsevier, vol. 25(1), pages 55-61, January.
    22. Piotr Niedzielski & Magdalena Zioło & Jarosław Kozuba & Ewa Kuzionko-Ochrymiuk & Natalia Drop, 2021. "Analysis of the Relationship of the Degree of Aviation Sector Development with Greenhouse Gas Emissions and Measures of Economic Development in the European Union Countries," Energies, MDPI, vol. 14(13), pages 1-16, June.
    23. Mayer, Robert & Ryley, Tim & Gillingwater, David, 2015. "Eco-positioning of airlines: Perception versus actual performance," Journal of Air Transport Management, Elsevier, vol. 44, pages 82-89.
    24. O'Connor, Kevin, 2019. "The historical foundations of the Asia Pacific air service network," Journal of Transport Geography, Elsevier, vol. 81(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:9:p:5147-5158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.