IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i6p3144-3153.html
   My bibliography  Save this article

Optimal replacement of residential air conditioning equipment to minimize energy, greenhouse gas emissions, and consumer cost in the US

Author

Listed:
  • De Kleine, Robert D.
  • Keoleian, Gregory A.
  • Kelly, Jarod C.

Abstract

A life cycle optimization of the replacement of residential central air conditioners (CACs) was conducted in order to identify replacement schedules that minimized three separate objectives: life cycle energy consumption, greenhouse gas (GHG) emissions, and consumer cost. The analysis was conducted for the time period of 1985-2025 for Ann Arbor, MI and San Antonio, TX. Using annual sales-weighted efficiencies of residential CAC equipment, the tradeoff between potential operational savings and the burdens of producing new, more efficient equipment was evaluated. The optimal replacement schedule for each objective was identified for each location and service scenario. In general, minimizing energy consumption required frequent replacement (4-12 replacements), minimizing GHG required fewer replacements (2-5 replacements), and minimizing cost required the fewest replacements (1-3 replacements) over the time horizon. Scenario analysis of different federal efficiency standards, regional standards, and Energy Star purchases were conducted to quantify each policy's impact. For example, a 16 SEER regional standard in Texas was shown to either reduce primary energy consumption 13%, GHGs emissions by 11%, or cost by 6-7% when performing optimal replacement of CACs from 2005 or before. The results also indicate that proper servicing should be a higher priority than optimal replacement to minimize environmental burdens.

Suggested Citation

  • De Kleine, Robert D. & Keoleian, Gregory A. & Kelly, Jarod C., 2011. "Optimal replacement of residential air conditioning equipment to minimize energy, greenhouse gas emissions, and consumer cost in the US," Energy Policy, Elsevier, vol. 39(6), pages 3144-3153, June.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:6:p:3144-3153
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511001583
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahlia, T. M. I. & Masjuki, H. H. & Saidur, R. & Amalina, M. A., 2004. "Viewpoint: Mitigation of emissions through energy efficiency standards for room air conditioners in Malaysia," Energy Policy, Elsevier, vol. 32(16), pages 1783-1787, November.
    2. Meyers, S & McMahon, J.E & McNeil, M & Liu, X, 2003. "Impacts of US federal energy efficiency standards for residential appliances," Energy, Elsevier, vol. 28(8), pages 755-767.
    3. Saidur, R. & Masjuki, H.H. & Jamaluddin, M.Y. & Ahmed, S., 2007. "Energy and associated greenhouse gas emissions from household appliances in Malaysia," Energy Policy, Elsevier, vol. 35(3), pages 1648-1657, March.
    4. Sanchez, Marla C. & Brown, Richard E. & Webber, Carrie & Homan, Gregory K., 2008. "Savings estimates for the United States Environmental Protection Agency's ENERGY STAR voluntary product labeling program," Energy Policy, Elsevier, vol. 36(6), pages 2098-2108, June.
    5. Webber, C. A. & Brown, R. E. & Koomey, J., 2000. "Savings estimates for the E S(R) voluntary labeling program," Energy Policy, Elsevier, vol. 28(15), pages 1137-1149, December.
    6. Kim, Hyung Chul & Keoleian, Gregory A. & Horie, Yuhta A., 2006. "Optimal household refrigerator replacement policy for life cycle energy, greenhouse gas emissions, and cost," Energy Policy, Elsevier, vol. 34(15), pages 2310-2323, October.
    7. Rosenquist, Greg & McNeil, Michael & Iyer, Maithili & Meyers, Stephen & McMahon, James, 2006. "Energy efficiency standards for equipment: Additional opportunities in the residential and commercial sectors," Energy Policy, Elsevier, vol. 34(17), pages 3257-3267, November.
    8. Lu, Wei, 2007. "Potential energy savings and environmental impacts of energy efficiency standards for vapor compression central air conditioning units in China," Energy Policy, Elsevier, vol. 35(3), pages 1709-1717, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cooper, Daniel R. & Skelton, Alexandra C.H. & Moynihan, Muiris C. & Allwood, Julian M., 2014. "Component level strategies for exploiting the lifespan of steel in products," Resources, Conservation & Recycling, Elsevier, vol. 84(C), pages 24-34.
    2. Torsten Hummen & Stefanie Hellweg & Ramin Roshandel, 2023. "Optimizing Lifespan of Circular Products: A Generic Dynamic Programming Approach for Energy-Using Products," Energies, MDPI, vol. 16(18), pages 1-27, September.
    3. Safarzadeh, Soroush & Rasti-Barzoki, Morteza, 2019. "A game theoretic approach for pricing policies in a duopolistic supply chain considering energy productivity, industrial rebound effect, and government policies," Energy, Elsevier, vol. 167(C), pages 92-105.
    4. Zaman, Hosain & Zaccour, Georges, 2020. "Vehicle scrappage incentives to accelerate the replacement decision of heterogeneous consumers," Omega, Elsevier, vol. 91(C).
    5. Yuya Nakamoto & Shigemi Kagawa, 2022. "A generalized framework for analyzing car lifetime effects on stock, flow, and carbon footprint," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 433-447, April.
    6. Garg, Amit & Shukla, P.R. & Maheshwari, Jyoti & Upadhyay, Jigeesha, 2014. "An assessment of household electricity load curves and corresponding CO2 marginal abatement cost curves for Gujarat state, India," Energy Policy, Elsevier, vol. 66(C), pages 568-584.
    7. Babette Never, 2023. "Green and Social Regulation of Second Hand Appliance Markets: the Case of Air Conditioners in the Philippines," Circular Economy and Sustainability,, Springer.
    8. Safarzadeh, Soroush & Rasti-Barzoki, Morteza & Hejazi, Seyed Reza, 2020. "A review of optimal energy policy instruments on industrial energy efficiency programs, rebound effects, and government policies," Energy Policy, Elsevier, vol. 139(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Souvik Datta & Massimo Filippini, 2012. "Analysing the Impact of ENERGY STAR Rebate Policies in the US," CEPE Working paper series 12-86, CEPE Center for Energy Policy and Economics, ETH Zurich.
    2. Zha, Donglan & Yang, Guanglei & Wang, Wenzhong & Wang, Qunwei & Zhou, Dequn, 2020. "Appliance energy labels and consumer heterogeneity: A latent class approach based on a discrete choice experiment in China," Energy Economics, Elsevier, vol. 90(C).
    3. Lim, Seong-Rin & Schoenung, Julie M., 2011. "Measurement and analysis of product energy efficiency to assist energy star criteria development: An example for desktop computers," Energy Policy, Elsevier, vol. 39(12), pages 8003-8010.
    4. Al-Mofleh, Anwar & Taib, Soib & Mujeebu, M. Abdul & Salah, Wael, 2009. "Analysis of sectoral energy conservation in Malaysia," Energy, Elsevier, vol. 34(6), pages 733-739.
    5. Xiaowei Ma & Mei Wang & Chuandong Li, 2019. "A Summary on Research of Household Energy Consumption: A Bibliometric Analysis," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
    6. Datta, Souvik & Gulati, Sumeet, 2014. "Utility rebates for ENERGY STAR appliances: Are they effective?," Journal of Environmental Economics and Management, Elsevier, vol. 68(3), pages 480-506.
    7. Young, Denise, 2008. "When do energy-efficient appliances generate energy savings? Some evidence from Canada," Energy Policy, Elsevier, vol. 36(1), pages 34-46, January.
    8. Shi, Xunpeng, 2015. "Application of best practice for setting minimum energy efficiency standards in technically disadvantaged countries: Case study of Air Conditioners in Brunei Darussalam," Applied Energy, Elsevier, vol. 157(C), pages 1-12.
    9. Vadas, Timothy M. & Fahey, Timothy J. & Sherman, Ruth E. & Kay, David, 2007. "Local-scale analysis of carbon mitigation strategies: Tompkins County, New York, USA," Energy Policy, Elsevier, vol. 35(11), pages 5515-5525, November.
    10. Shekarchian, M. & Moghavvemi, M. & Mahlia, T.M.I. & Mazandarani, A., 2011. "A review on the pattern of electricity generation and emission in Malaysia from 1976 to 2008," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2629-2642, August.
    11. Augustus de Melo, Conrado & de Martino Jannuzzi, Gilberto, 2010. "Energy efficiency standards for refrigerators in Brazil: A methodology for impact evaluation," Energy Policy, Elsevier, vol. 38(11), pages 6545-6550, November.
    12. Jing, Ong Li & Bashir, Mohammed J.K. & Kao, Jehng-Jung, 2015. "Solar radiation based benefit and cost evaluation for solar water heater expansion in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 328-335.
    13. Pizer, William A. & Morgenstern, Richard & Shih, Jhih-Shyang, 2010. "Evaluating Voluntary Climate Programs in the United States," RFF Working Paper Series dp-08-13-rev, Resources for the Future.
    14. Schleich, Joachim & Gassmann, Xavier & Faure, Corinne & Meissner, Thomas, 2016. "Making the implicit explicit: A look inside the implicit discount rate," Energy Policy, Elsevier, vol. 97(C), pages 321-331.
    15. Shi, Xunpeng, 2014. "Setting effective mandatory energy efficiency standards and labelling regulations: A review of best practices in the Asia Pacific region," Applied Energy, Elsevier, vol. 133(C), pages 135-143.
    16. Schleich, Joachim & Durand, Antoine & Brugger, Heike, 2021. "How effective are EU minimum energy performance standards and energy labels for cold appliances?," Energy Policy, Elsevier, vol. 149(C).
    17. Fischer, Carolyn, 2005. "On the importance of the supply side in demand-side management," Energy Economics, Elsevier, vol. 27(1), pages 165-180, January.
    18. O'Doherty, Joe & Lyons, Sean & Tol, Richard S.J., 2008. "Energy-using appliances and energy-saving features: Determinants of ownership in Ireland," Applied Energy, Elsevier, vol. 85(7), pages 650-662, July.
    19. Chul-Ho Kim & Seung-Eon Lee & Kang-Soo Kim, 2018. "Analysis of Energy Saving Potential in High-Performance Building Technologies under Korean Climatic Conditions," Energies, MDPI, vol. 11(4), pages 1-34, April.
    20. Thirugnanasambandam, M. & Hasanuzzaman, M. & Saidur, R. & Ali, M.B. & Rajakarunakaran, S. & Devaraj, D. & Rahim, N.A., 2011. "Analysis of electrical motors load factors and energy savings in an Indian cement industry," Energy, Elsevier, vol. 36(7), pages 4307-4314.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:6:p:3144-3153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.