IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i3p1113-1122.html
   My bibliography  Save this article

Policy progress in mitigation of climate change in Taiwan

Author

Listed:
  • Hwang, Jenn Jiang
  • Chang, Wei Ru

Abstract

To make an active contribution to the global effort in mitigation of climate change, Taiwan government has implemented the "Frameworks for Sustainable Energy Policy--An Energy-Saving and Carbon-Reduction Action Plan" in June 2008. It has made a commitment of a stepwise reduction of nationwide greenhouse gas (GHG) emissions, which returns the nationwide GHG emission to 2008 levels by 2020, then reduces to 2000 levels by 2025, and finally cuts 50% of 2000 levels by 2050. The fundamental strategy is to reduce the GHG emission under acceptable economic development and energy security to achieve generation-spanning triple-win in energy, environment and economy. The major policy instruments such as "Statute for Renewable Energy Development", "GHG Reduction Law (draft)," "Regulation for Energy Tax (draft)," and "Energy Management Act" have been either implemented or scheduled for legislative reviewing. The purpose of this paper is to present an updated review of the outcomes of GHG emission reduction in Taiwan. In addition, the progress and priority of policy instruments in GHG emission reduction are analyzed as well.

Suggested Citation

  • Hwang, Jenn Jiang & Chang, Wei Ru, 2011. "Policy progress in mitigation of climate change in Taiwan," Energy Policy, Elsevier, vol. 39(3), pages 1113-1122, March.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:3:p:1113-1122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(10)00857-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barrett, Mark & Lowe, Robert & Oreszczyn, Tadj & Steadman, Philip, 2008. "How to support growth with less energy," Energy Policy, Elsevier, vol. 36(12), pages 4592-4599, December.
    2. Hwang, Jenn Jiang, 2010. "Promotional policy for renewable energy development in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1079-1087, April.
    3. Lin, Sue J. & Lu, I.J. & Lewis, Charles, 2006. "Identifying key factors and strategies for reducing industrial CO2 emissions from a non-Kyoto protocol member's (Taiwan) perspective," Energy Policy, Elsevier, vol. 34(13), pages 1499-1507, September.
    4. Hu, Jin-Li & Kao, Chih-Hung, 2007. "Efficient energy-saving targets for APEC economies," Energy Policy, Elsevier, vol. 35(1), pages 373-382, January.
    5. Ko, Fu-Kuang & Huang, Chang-Bin & Tseng, Pei-Ying & Lin, Chung-Han & Zheng, Bo-Yan & Chiu, Hsiu-Mei, 2010. "Long-term CO2 emissions reduction target and scenarios of power sector in Taiwan," Energy Policy, Elsevier, vol. 38(1), pages 288-300, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Chi-Tai & Chiu, Chui-Sheng, 2014. "Competitive strategies for Taiwan's semiconductor industry in a new world economy," Technology in Society, Elsevier, vol. 36(C), pages 60-73.
    2. Shyu, Chian-Woei, 2014. "Development of Taiwanese government’s climate policy after the Kyoto protocol: Applying policy network theory as an analytical framework," Energy Policy, Elsevier, vol. 69(C), pages 334-346.
    3. Sahidan Abdulmana & Matias Garcia-Constantino & Apiradee Lim, 2023. "The Influence of Elevation, Land Cover and Vegetation Index on LST Increase in Taiwan from 2000 to 2021," Sustainability, MDPI, vol. 15(4), pages 1-12, February.
    4. Yingying Sun & Ziqiang Han, 2018. "Climate Change Risk Perception in Taiwan: Correlation with Individual and Societal Factors," IJERPH, MDPI, vol. 15(1), pages 1-12, January.
    5. Chiu, Mei-Shiu, 2013. "Tensions in implementing the “energy-conservation/carbon-reduction” policy in Taiwanese culture," Energy Policy, Elsevier, vol. 55(C), pages 415-425.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shyu, Chian-Woei, 2014. "Development of Taiwanese government’s climate policy after the Kyoto protocol: Applying policy network theory as an analytical framework," Energy Policy, Elsevier, vol. 69(C), pages 334-346.
    2. Xiao Gong & Jianing Mi & Chunyan Wei & Ruitao Yang, 2019. "Measuring Environmental and Economic Performance of Air Pollution Control for Province-Level Areas in China," IJERPH, MDPI, vol. 16(8), pages 1-19, April.
    3. Hu, Jin-Li & Wang, Shih-Chuan & Yeh, Fang-Yu, 2006. "Total-factor water efficiency of regions in China," Resources Policy, Elsevier, vol. 31(4), pages 217-230, December.
    4. Lu, I.J. & Lin, Sue J. & Lewis, Charles, 2007. "Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea," Energy Policy, Elsevier, vol. 35(6), pages 3226-3235, June.
    5. Honma, Satoshi, 2012. "Environmental and economic efficiencies in the Asia-Pacific region," MPRA Paper 43361, University Library of Munich, Germany.
    6. Chou, Kuei Tien & Liou, Hwa Meei, 2012. "Analysis on energy intensive industries under Taiwan's climate change policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2631-2642.
    7. Pardo Martínez, Clara Inés & Silveira, Semida, 2012. "Analysis of energy use and CO2 emission in service industries: Evidence from Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5285-5294.
    8. Hang, Ye & Sun, Jiasen & Wang, Qunwei & Zhao, Zengyao & Wang, Yizhong, 2015. "Measuring energy inefficiency with undesirable outputs and technology heterogeneity in Chinese cities," Economic Modelling, Elsevier, vol. 49(C), pages 46-52.
    9. Cheng-Chih Chou & Liang-Rui Chen & Kuo-Chen Wu, 2022. "A Study on Regulations Mandating Obligation on Renewable Energy in Taiwan," Energies, MDPI, vol. 15(23), pages 1-23, December.
    10. Qu, Qiushi & Wang, Limao & Cao, Zhi & Zhong, Shuai & Mou, Chufu & Sun, Yanzhi & Xiong, Chenran, 2019. "Unfolding the price effects of non-ferrous industry chain on economic development: A case study of Yunnan province," Resources Policy, Elsevier, vol. 61(C), pages 1-20.
    11. Lee, Shun-Chung, 2011. "Using real option analysis for highly uncertain technology investments: The case of wind energy technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4443-4450.
    12. Honma, Satoshi & Hu, Jin-Li, 2009. "Total-factor energy productivity growth of regions in Japan," Energy Policy, Elsevier, vol. 37(10), pages 3941-3950, October.
    13. Jinghan Chen & Wen Zhou & Hongtao Yang, 2019. "Is Embodied Energy a Better Starting Point for Solving Energy Security Issues?—Based on an Overview of Embodied Energy-Related Research," Sustainability, MDPI, vol. 11(16), pages 1-22, August.
    14. Jou, Chih-Ju G. & Wu, Chung-Rung & Lee, Chien-Li, 2010. "Reduction of energy cost and CO2 emission for the furnace using energy recovered from waste tail-gas," Energy, Elsevier, vol. 35(3), pages 1232-1236.
    15. Chang, Tzu-Pu & Hu, Jin-Li, 2010. "Total-factor energy productivity growth, technical progress, and efficiency change: An empirical study of China," Applied Energy, Elsevier, vol. 87(10), pages 3262-3270, October.
    16. Shuangjie Li & Li Li & Liming Wang, 2020. "2030 Target for Energy Efficiency and Emission Reduction in the EU Paper Industry," Energies, MDPI, vol. 14(1), pages 1-17, December.
    17. Chen, Zhenling & Yuan, Xiao-Chen & Zhang, Xiaoling & Cao, Yunfei, 2020. "How will the Chinese national carbon emissions trading scheme work? The assessment of regional potential gains," Energy Policy, Elsevier, vol. 137(C).
    18. Zhang, Yue-Jun & Sun, Ya-Fang & Huang, Junling, 2018. "Energy efficiency, carbon emission performance, and technology gaps: Evidence from CDM project investment," Energy Policy, Elsevier, vol. 115(C), pages 119-130.
    19. Feng, Chun-Chiang & Chang, Kuei-Feng & Lin, Jin-Xu & Lee, Tsung-Chen & Lin, Shih-Mo, 2022. "Toward green transition in the post Paris Agreement era: The case of Taiwan," Energy Policy, Elsevier, vol. 165(C).
    20. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:3:p:1113-1122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.