IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i2p613-627.html
   My bibliography  Save this article

Methods for calculating CO2 intensity of power generation and consumption: A global perspective

Author

Listed:
  • Graus, Wina
  • Worrell, Ernst

Abstract

This paper compares five methods to calculate CO2 intensity (g/kWh) of power generation, based on different ways to take into account combined heat and power generation. It was found that the method chosen can have a large impact on the CO2 intensity for countries with relatively large amounts of combined heat and power plants. Of the analysed countries, the difference in CO2 intensities is found to be especially large for Russia, Germany and Italy (82%, 31% and 20% differences in 2007, respectively, for CO2 intensity of total power generation). This study furthermore shows that by taking into account transmission and distribution losses and auxiliary power use, CO2 intensity for electricity consumption is 8-44% higher for the analysed countries than the CO2 intensity for electricity generation, with 15% as global average, in 2007. CO2 emissions from power generation can be reduced by implementing best practice technology for fossil power generation. This paper estimates a potential of 18-44% savings, with 29% as global average. An additional potential is expected to exist for reducing transmission and distribution losses, which range from 4% to 25% of power generation in 2006, for the analysed countries, with 9% as global average.

Suggested Citation

  • Graus, Wina & Worrell, Ernst, 2011. "Methods for calculating CO2 intensity of power generation and consumption: A global perspective," Energy Policy, Elsevier, vol. 39(2), pages 613-627, February.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:2:p:613-627
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(10)00785-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Graus, Wina & Worrell, Ernst, 2009. "Trend in efficiency and capacity of fossil power generation in the EU," Energy Policy, Elsevier, vol. 37(6), pages 2147-2160, June.
    2. Hondo, Hiroki, 2005. "Life cycle GHG emission analysis of power generation systems: Japanese case," Energy, Elsevier, vol. 30(11), pages 2042-2056.
    3. Graus, W.H.J. & Worrell, E., 2007. "Effects of SO2 and NOx control on energy-efficiency power generation," Energy Policy, Elsevier, vol. 35(7), pages 3898-3908, July.
    4. World Bank, 2009. "World Development Indicators 2009," World Bank Publications - Books, The World Bank Group, number 4367, December.
    5. Graus, W.H.J. & Voogt, M. & Worrell, E., 2007. "International comparison of energy efficiency of fossil power generation," Energy Policy, Elsevier, vol. 35(7), pages 3936-3951, July.
    6. Maruyama, Naoko & Eckelman, Matthew J., 2009. "Long-term trends of electric efficiencies in electricity generation in developing countries," Energy Policy, Elsevier, vol. 37(5), pages 1678-1686, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de la Rue du Can, Stephane & Price, Lynn & Zwickel, Timm, 2015. "Understanding the full climate change impact of energy consumption and mitigation at the end-use level: A proposed methodology for allocating indirect carbon dioxide emissions," Applied Energy, Elsevier, vol. 159(C), pages 548-559.
    2. da Silva, Julio Augusto Mendes & Santos, José Joaquim Conceição Soares & Carvalho, Monica & de Oliveira, Silvio, 2017. "On the thermoeconomic and LCA methods for waste and fuel allocation in multiproduct systems," Energy, Elsevier, vol. 127(C), pages 775-785.
    3. Holmberg, Henrik & Tuomaala, Mari & Haikonen, Turo & Ahtila, Pekka, 2012. "Allocation of fuel costs and CO2-emissions to heat and power in an industrial CHP plant: Case integrated pulp and paper mill," Applied Energy, Elsevier, vol. 93(C), pages 614-623.
    4. Dardan Klimenta & Marija Mihajlović & Ivan Ristić & Darius Andriukaitis, 2022. "Possible Scenarios for Reduction of Carbon Dioxide Emissions in Serbia by Generating Electricity from Natural Gas," Energies, MDPI, vol. 15(13), pages 1-33, June.
    5. Soimakallio, Sampo & Saikku, Laura, 2012. "CO2 emissions attributed to annual average electricity consumption in OECD (the Organisation for Economic Co-operation and Development) countries," Energy, Elsevier, vol. 38(1), pages 13-20.
    6. Soimakallio, Sampo & Kiviluoma, Juha & Saikku, Laura, 2011. "The complexity and challenges of determining GHG (greenhouse gas) emissions from grid electricity consumption and conservation in LCA (life cycle assessment) – A methodological review," Energy, Elsevier, vol. 36(12), pages 6705-6713.
    7. Klaassen, R.E. & Patel, M.K., 2013. "District heating in the Netherlands today: A techno-economic assessment for NGCC-CHP (Natural Gas Combined Cycle combined heat and power)," Energy, Elsevier, vol. 54(C), pages 63-73.
    8. Harmsen, Robert & Graus, Wina, 2013. "How much CO2 emissions do we reduce by saving electricity? A focus on methods," Energy Policy, Elsevier, vol. 60(C), pages 803-812.
    9. Arvesen, Anders & Hauan, Ingrid Bjerke & Bolsøy, Bernhard Mikal & Hertwich, Edgar G., 2015. "Life cycle assessment of transport of electricity via different voltage levels: A case study for Nord-Trøndelag county in Norway," Applied Energy, Elsevier, vol. 157(C), pages 144-151.
    10. Yue, Hui & Worrell, Ernst & Crijns-Graus, Wina, 2018. "Modeling the multiple benefits of electricity savings for emissions reduction on power grid level: A case study of China’s chemical industry," Applied Energy, Elsevier, vol. 230(C), pages 1603-1632.
    11. Lin, Boqiang & Moubarak, Mohamed, 2014. "Mitigation potential of carbon dioxide emissions in the Chinese textile industry," Applied Energy, Elsevier, vol. 113(C), pages 781-787.
    12. dos Santos, Rodrigo G. & de Faria, Pedro R. & Santos, José J.C.S. & da Silva, Julio A.M. & Flórez-Orrego, Daniel, 2016. "Thermoeconomic modeling for CO2 allocation in steam and gas turbine cogeneration systems," Energy, Elsevier, vol. 117(P2), pages 590-603.
    13. Harmsen, Robert & Crijns-Graus, Wina, 2021. "Unhiding the role of CHP in power & heat sector decomposition analyses," Energy Policy, Elsevier, vol. 152(C).
    14. Monni, S. & Syri, S., 2011. "Weekly greenhouse gas emissions of municipalities: Methods and comparisons," Energy Policy, Elsevier, vol. 39(9), pages 4755-4765, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Boqiang & Sai, Rockson, 2021. "A multi factor Malmquist CO2emission performance indices: Evidence from Sub Saharan African public thermal power plants," Energy, Elsevier, vol. 223(C).
    2. Ang, B.W. & Zhou, P. & Tay, L.P., 2011. "Potential for reducing global carbon emissions from electricity production--A benchmarking analysis," Energy Policy, Elsevier, vol. 39(5), pages 2482-2489, May.
    3. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
    4. Egging, Ruud, 2013. "Drivers, trends, and uncertainty in long-term price projections for energy management in public buildings," Energy Policy, Elsevier, vol. 62(C), pages 617-624.
    5. Ghosh, Ranjan & Kathuria, Vinish, 2016. "The effect of regulatory governance on efficiency of thermal power generation in India: A stochastic frontier analysis," Energy Policy, Elsevier, vol. 89(C), pages 11-24.
    6. Ling, Yantao & Xia, Senmao & Cao, Mengqiu & He, Kerun & Lim, Ming K. & Sukumar, Arun & Yi, Huiyong & Qian, Xiaoduo, 2021. "Carbon emissions in China's thermal electricity and heating industry: an input-output structural decomposition analysis," LSE Research Online Documents on Economics 112930, London School of Economics and Political Science, LSE Library.
    7. Oda, Junichiro & Akimoto, Keigo & Tomoda, Toshimasa & Nagashima, Miyuki & Wada, Kenichi & Sano, Fuminori, 2012. "International comparisons of energy efficiency in power, steel, and cement industries," Energy Policy, Elsevier, vol. 44(C), pages 118-129.
    8. Zhang, Ning & Zhou, P. & Choi, Yongrok, 2013. "Energy efficiency, CO2 emission performance and technology gaps in fossil fuel electricity generation in Korea: A meta-frontier non-radial directional distance functionanalysis," Energy Policy, Elsevier, vol. 56(C), pages 653-662.
    9. Elena Verdolini & Nick Johnstone & Ivan Hašcic, 2011. "Technological Change, Fuel Efficiency and Carbon Intensity in Electricity Generation: A Cross-Country Empirical Study," Working Papers 2011.92, Fondazione Eni Enrico Mattei.
    10. Nemet, Gregory F., 2010. "Robust incentives and the design of a climate change governance regime," Energy Policy, Elsevier, vol. 38(11), pages 7216-7225, November.
    11. de Groot, Mats & Crijns-Graus, Wina & Harmsen, Robert, 2017. "The effects of variable renewable electricity on energy efficiency and full load hours of fossil-fired power plants in the European Union," Energy, Elsevier, vol. 138(C), pages 575-589.
    12. Lanzi, Elisa & Verdolini, Elena & Haščič, Ivan, 2011. "Efficiency-improving fossil fuel technologies for electricity generation: Data selection and trends," Energy Policy, Elsevier, vol. 39(11), pages 7000-7014.
    13. Sueyoshi, Toshiyuki & Goto, Mika & Sugiyama, Manabu, 2013. "DEA window analysis for environmental assessment in a dynamic time shift: Performance assessment of U.S. coal-fired power plants," Energy Economics, Elsevier, vol. 40(C), pages 845-857.
    14. Maruyama, Naoko & Eckelman, Matthew J., 2009. "Long-term trends of electric efficiencies in electricity generation in developing countries," Energy Policy, Elsevier, vol. 37(5), pages 1678-1686, May.
    15. Li, Aijun & Du, Nan & Wei, Qian, 2014. "The cross-country implications of alternative climate policies," Energy Policy, Elsevier, vol. 72(C), pages 155-163.
    16. Erkki Karo & Rainer Kattel, 2010. "The Copying Paradox: Why Converging Policies but Diverging Capacities in Eastern European Innovation Systems?," Institutions and Economies (formerly known as International Journal of Institutions and Economies), Faculty of Economics and Administration, University of Malaya, vol. 2(2), pages 167-206, October.
    17. Okada, Keisuke, 2012. "The effects of female HIV/AIDS status on fertility and child health in Cambodia," Journal of Asian Economics, Elsevier, vol. 23(5), pages 560-570.
    18. Fangyi Li & Zhaoyang Ye & Xilin Xiao & Dawei Ma, 2019. "Environmental Benefits of Stock Evolution of Coal-Fired Power Generators in China," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    19. Lise Rakner, 2012. "Foreign Aid and Democratic Consolidation in Zambia," WIDER Working Paper Series wp-2012-016, World Institute for Development Economic Research (UNU-WIDER).
    20. Augustin Kwasi Fosu, 2010. "The Global Financial Crisis and Development: Whither Africa," WIDER Working Paper Series wp-2010-124, World Institute for Development Economic Research (UNU-WIDER).

    More about this item

    Keywords

    CO2 intensity Fossil power generation Energy efficiency;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:2:p:613-627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.