IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i1p429-441.html
   My bibliography  Save this article

Embodied emissions abatement--A policy assessment using stochastic analysis

Author

Listed:
  • Acquaye, Adolf
  • Duffy, Aidan
  • Basu, Biswajit

Abstract

Policymakers traditionally focus on regulating operational energy use in buildings, ignoring other life cycle components such as embodied energy even though this may account for a significant portion of life cycle emissions. Data relating to embodied energy and emissions in buildings is limited. However, stochastic techniques can be used to estimate the distribution of such emissions from buildings. This helps policymakers identify which instruments are appropriate for achieving emissions reductions. A primary aim of this paper is to demonstrate this approach using a sample of apartment buildings in Ireland. A Monte-Carlo simulation suggests that the average probability distribution of embodied greenhouse gases in a sample of Irish apartment buildings is characteristic of a Wakeby distribution with a long tail which can be targeted for improvement through the implementation of appropriate policies. Two policies are investigated: one regulatory whereby the embodied emissions of building materials are limited to the 80th percentile of their current distributions; and one informational where buildings are given an embodied emissions rating. It is estimated that such policies could result in an average reduction of 450Â gCO2-eq/[euro] for the sample of apartment buildings analysed and could result in savings of [euro]2bn to EU-27 countries in avoided carbon credits.

Suggested Citation

  • Acquaye, Adolf & Duffy, Aidan & Basu, Biswajit, 2011. "Embodied emissions abatement--A policy assessment using stochastic analysis," Energy Policy, Elsevier, vol. 39(1), pages 429-441, January.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:1:p:429-441
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(10)00773-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Legge, Thomas & Scott, Susan, 2009. "Policy Options to Reduce Ireland's Greenhouse Gas Emissions," Research Series, Economic and Social Research Institute (ESRI), number RS9, June.
    2. Graham Treloar, 1997. "Extracting Embodied Energy Paths from Input-Output Tables: Towards an Input-Output-based Hybrid Energy Analysis Method," Economic Systems Research, Taylor & Francis Journals, vol. 9(4), pages 375-391.
    3. Kenny, R. & Law, C. & Pearce, J.M., 2010. "Towards real energy economics: Energy policy driven by life-cycle carbon emission," Energy Policy, Elsevier, vol. 38(4), pages 1969-1978, April.
    4. Lenzen, M. & Treloar, G., 2002. "Embodied energy in buildings: wood versus concrete--reply to Borjesson and Gustavsson," Energy Policy, Elsevier, vol. 30(3), pages 249-255, February.
    5. Lenzen, Manfred & Dey, Christopher, 2000. "Truncation error in embodied energy analyses of basic iron and steel products," Energy, Elsevier, vol. 25(6), pages 577-585.
    6. Yohanis, Y.G. & Norton, B., 2002. "Life-cycle operational and embodied energy for a generic single-storey office building in the UK," Energy, Elsevier, vol. 27(1), pages 77-92.
    7. Graham J. Treloar & Peter E.D. Love & Gary D. Holt, 2001. "Using national input/output data for embodied energy analysis of individual residential buildings," Construction Management and Economics, Taylor & Francis Journals, vol. 19(1), pages 49-61, January.
    8. Bruvoll, Annegrete & Larsen, Bodil Merethe, 2004. "Greenhouse gas emissions in Norway: do carbon taxes work?," Energy Policy, Elsevier, vol. 32(4), pages 493-505, March.
    9. Lutz, Christian & Meyer, Bernd, 2009. "Environmental and economic effects of post-Kyoto carbon regimes: Results of simulations with the global model GINFORS," Energy Policy, Elsevier, vol. 37(5), pages 1758-1766, May.
    10. Chen, T.Y & Burnett, J & Chau, C.K, 2001. "Analysis of embodied energy use in the residential building of Hong Kong," Energy, Elsevier, vol. 26(4), pages 323-340.
    11. Jose Rueda-Cantuche & Joerg Beutel & Frederik Neuwahl & Ignazio Mongelli & Andreas Loeschel, 2009. "A Symmetric Input-Output Table For Eu27: Latest Progress," Economic Systems Research, Taylor & Francis Journals, vol. 21(1), pages 59-79.
    12. Born, Peter, 1996. "Input-output analysis: Input of energy, CO2, and work to produce goods," Journal of Policy Modeling, Elsevier, vol. 18(2), pages 217-221, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruizhe Zhang & Hong Zhang & Shangang Hei & Hongyu Ye, 2023. "Research on Database Construction and Calculation of Building Carbon Emissions Based on BIM General Data Framework," Sustainability, MDPI, vol. 15(13), pages 1-27, June.
    2. Wilby, Mark Richard & Rodríguez González, Ana Belén & Vinagre Díaz, Juan José, 2014. "Empirical and dynamic primary energy factors," Energy, Elsevier, vol. 73(C), pages 771-779.
    3. Agostinho, Feni & Bertaglia, Ana B.B. & Almeida, Cecília M.V.B. & Giannetti, Biagio F., 2015. "Influence of cellulase enzyme production on the energetic–environmental performance of lignocellulosic ethanol," Ecological Modelling, Elsevier, vol. 315(C), pages 46-56.
    4. Zhuang, Mufan & Gao, Ziyan & Geng, Yong & Xiao, Shijiang, 2022. "Spatial distribution pattern of embodied natural resources use in China and its relationship with socioeconomic development: From an exergetic perspective," Resources Policy, Elsevier, vol. 79(C).
    5. Heidari, Negin & Pearce, Joshua M., 2016. "A review of greenhouse gas emission liabilities as the value of renewable energy for mitigating lawsuits for climate change related damages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 899-908.
    6. Wang, Xue-Chao & Klemeš, Jiří Jaromír & Wang, Yutao & Dong, Xiaobin & Wei, Hejie & Xu, Zihan & Varbanov, Petar Sabev, 2020. "Water-Energy-Carbon Emissions nexus analysis of China: An environmental input-output model-based approach," Applied Energy, Elsevier, vol. 261(C).
    7. Alireza Tabrizikahou & Piotr Nowotarski, 2021. "Mitigating the Energy Consumption and the Carbon Emission in the Building Structures by Optimization of the Construction Processes," Energies, MDPI, vol. 14(11), pages 1-20, June.
    8. Alena Tažiková & Zuzana Struková & Mária Kozlovská, 2023. "An Analysis of Real Site Operation Time in Construction of Residential Buildings in Slovakia," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    9. Chau, C.K. & Hui, W.K. & Ng, W.Y. & Powell, G., 2012. "Assessment of CO2 emissions reduction in high-rise concrete office buildings using different material use options," Resources, Conservation & Recycling, Elsevier, vol. 61(C), pages 22-34.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rauf, Abdul & Crawford, Robert H., 2015. "Building service life and its effect on the life cycle embodied energy of buildings," Energy, Elsevier, vol. 79(C), pages 140-148.
    2. Xueting Zhao, 2015. "LCA Methodologies an Annotated Bibliography," Working Papers Resource Document 2015-03, Regional Research Institute, West Virginia University.
    3. Dixit, Manish K., 2017. "Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 390-413.
    4. Copiello, Sergio, 2017. "Building energy efficiency: A research branch made of paradoxes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1064-1076.
    5. Hauke Ward & Leonie Wenz & Jan C. Steckel & Jan C. Minx, 2018. "Truncation Error Estimates in Process Life Cycle Assessment Using Input‐Output Analysis," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1080-1091, October.
    6. Stephan, André & Stephan, Laurent, 2014. "Reducing the total life cycle energy demand of recent residential buildings in Lebanon," Energy, Elsevier, vol. 74(C), pages 618-637.
    7. Chandratilake, S.R. & Dias, W.P.S., 2013. "Sustainability rating systems for buildings: Comparisons and correlations," Energy, Elsevier, vol. 59(C), pages 22-28.
    8. Kirsten S. Wiebe, 2016. "The impact of renewable energy diffusion on European consumption-based emissions," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 133-150, June.
    9. Bin, Guoshu & Parker, Paul, 2012. "Measuring buildings for sustainability: Comparing the initial and retrofit ecological footprint of a century home – The REEP House," Applied Energy, Elsevier, vol. 93(C), pages 24-32.
    10. Palmer, Graham, 2017. "An input-output based net-energy assessment of an electricity supply industry," Energy, Elsevier, vol. 141(C), pages 1504-1516.
    11. Ignacio Zabalza & Sabina Scarpellini & Alfonso Aranda & Eva Llera & Alberto Jáñez, 2013. "Use of LCA as a Tool for Building Ecodesign. A Case Study of a Low Energy Building in Spain," Energies, MDPI, vol. 6(8), pages 1-21, August.
    12. Lenzen, Manfred & Wachsmann, Ulrike, 2004. "Wind turbines in Brazil and Germany: an example of geographical variability in life-cycle assessment," Applied Energy, Elsevier, vol. 77(2), pages 119-130, February.
    13. Atmaca, Adem & Atmaca, Nihat, 2016. "Comparative life cycle energy and cost analysis of post-disaster temporary housings," Applied Energy, Elsevier, vol. 171(C), pages 429-443.
    14. Hernandez, Patxi & Kenny, Paul, 2011. "Development of a methodology for life cycle building energy ratings," Energy Policy, Elsevier, vol. 39(6), pages 3779-3788, June.
    15. Limmeechokchai, Bundit & Suksuntornsiri, Pawinee, 2007. "Embedded energy and total greenhouse gas emissions in final consumptions within Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(2), pages 259-281, February.
    16. Malmqvist, Tove & Glaumann, Mauritz & Scarpellini, Sabina & Zabalza, Ignacio & Aranda, Alfonso & Llera, Eva & Díaz, Sergio, 2011. "Life cycle assessment in buildings: The ENSLIC simplified method and guidelines," Energy, Elsevier, vol. 36(4), pages 1900-1907.
    17. Jesper Munksgaard & Manfred Lenzen & Thomas C. Jensen & Lise-Lotte Pade, 2005. "Transport Energy Embodied in Consumer Goods: A Hybrid Life-Cycle Analysis," Energy & Environment, , vol. 16(2), pages 283-301, March.
    18. Bao-Jun Tang & Pi-Qin Gong, 2014. "Evaluating newly added embodied energy inventory of China and the United States: An economic input-output LCA model," CEEP-BIT Working Papers 50, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    19. Yvan Dutil & Daniel Rousse & Guillermo Quesada, 2011. "Sustainable Buildings: An Ever Evolving Target," Sustainability, MDPI, vol. 3(2), pages 1-22, February.
    20. Kessides, Ioannis N. & Wade, David C., 2011. "Towards a sustainable global energy supply infrastructure: Net energy balance and density considerations," Energy Policy, Elsevier, vol. 39(9), pages 5322-5334, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:1:p:429-441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.