Advanced Search
MyIDEAS: Login

Efficiency-improving fossil fuel technologies for electricity generation: Data selection and trends

Contents:

Author Info

  • Lanzi, Elisa
  • Verdolini, Elena
  • Haščič, Ivan

Abstract

This paper studies patenting dynamics in efficiency improving electricity generation technologies as an important indicator of innovation activity. We build a novel database of worldwide patent applications in efficiency-improving fossil fuel technologies for electricity generation and then analyse patenting trends over time and across countries. We find that patenting has mostly been stable over time, with a recent decreasing trend. OECD countries represent the top innovators and the top markets for technology. Some non-OECD countries, and particularly China, are also very active in terms of patenting activity in this sector. The majority of patents are first filed in OECD countries and only then in BRIC and other non-OECD countries. BRIC and other non-OECD countries apply for patents that are mostly marketed domestically, but BRIC countries represent important markets for patent duplication of OECD inventions. These results are indicative of significant technology transfer in the field of efficiency-improving technologies for electricity production.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/pii/S0301421511005878
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Energy Policy.

Volume (Year): 39 (2011)
Issue (Month): 11 ()
Pages: 7000-7014

as in new window
Handle: RePEc:eee:enepol:v:39:y:2011:i:11:p:7000-7014

Contact details of provider:
Web page: http://www.elsevier.com/locate/enpol

Related research

Keywords: Technological innovation; Patents; Fossil fuels;

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Antoine Dechezleprêtre & Matthieu Glachant & Ivan Hascic & Nick Johnstone & Yann Ménière, 2011. "Invention and transfer of climate change-mitigation technologies: A global analysis," Post-Print hal-00488214, HAL.
  2. Hall, B. & Jaffe, A. & Trajtenberg, M., 2001. "The NBER Patent Citations Data File: Lessons, Insights and Methodological Tools," Papers 2001-29, Tel Aviv.
  3. Antoine Dechezleprêtre & Matthieu Glachant & Ivan Hascic & Nick Johnstone & Yann Ménière, 2010. "Invention and transfer of climate change mitigation technologies on a global scale: a study drawing on patent data," Grantham Research Institute on Climate Change and the Environment Working Papers 17, Grantham Research Institute on Climate Change and the Environment.
  4. Bruno Van Pottelsberghe & Dominique Guellec, 2000. "Applications grants and the value of patents," ULB Institutional Repository 2013/6229, ULB -- Universite Libre de Bruxelles.
  5. Popp, David, 2006. "International innovation and diffusion of air pollution control technologies: the effects of NOX and SO2 regulation in the US, Japan, and Germany," Journal of Environmental Economics and Management, Elsevier, vol. 51(1), pages 46-71, January.
  6. Graus, Wina & Worrell, Ernst, 2009. "Trend in efficiency and capacity of fossil power generation in the EU," Energy Policy, Elsevier, vol. 37(6), pages 2147-2160, June.
  7. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
  8. Verdolini, Elena & Galeotti, Marzio, 2011. "At home and abroad: An empirical analysis of innovation and diffusion in energy technologies," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 119-134, March.
  9. Joëlle Noailly, 2010. "Improving the Energy-Efficiency of Buildings: The Impact of Environmental Policy on Technological Innovation," Working Papers 2010.106, Fondazione Eni Enrico Mattei.
  10. Maruyama, Naoko & Eckelman, Matthew J., 2009. "Long-term trends of electric efficiencies in electricity generation in developing countries," Energy Policy, Elsevier, vol. 37(5), pages 1678-1686, May.
  11. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
  12. Harhoff, Dietmar & Scherer, Frederic M. & Vopel, Katrin, 2003. "Citations, family size, opposition and the value of patent rights," Research Policy, Elsevier, vol. 32(8), pages 1343-1363, September.
  13. Braun, Frauke G. & Hooper, Elizabeth & Wand, Robert & Zloczysti, Petra, 2011. "Holding a candle to innovation in concentrating solar power technologies: A study drawing on patent data," Energy Policy, Elsevier, vol. 39(5), pages 2441-2456, May.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Marit E. Klemetsen & Brita Bye & Arvid Raknerud, 2013. "Can non-market regulations spur innovations in environmental technologies? A study on firm level patenting," Discussion Papers 754, Research Department of Statistics Norway.
  2. Valentina Bosetti & Elena Verdolini, 2013. "Clean and Dirty International Technology Diffusion," Working Papers 2013.43, Fondazione Eni Enrico Mattei.
  3. Kyoung Hoon Kim & Kyoungjin Kim, 2012. "Exergy Analysis of Overspray Process in Gas Turbine Systems," Energies, MDPI, Open Access Journal, vol. 5(8), pages 2745-2758, July.
  4. Wang, Jinsheng & Ryan, David & Anthony, Edward J., 2011. "Reducing the greenhouse gas footprint of shale gas," Energy Policy, Elsevier, vol. 39(12), pages 8196-8199.
  5. Joëlle Noailly & Roger Smeets, 2013. "Directing Technical Change from Fossil-Fuel to Renewable Energy Innovation: An Empirical Application Using Firm-Level Patent Data," Working Papers 2013.34, Fondazione Eni Enrico Mattei.
  6. Joëlle Noailly & Victoria Shestalova, 2013. "Knowledge spillovers from renewable energy technologies, Lessons from patent citations," CPB Discussion Paper 262, CPB Netherlands Bureau for Economic Policy Analysis.
  7. Elena Verdolini & Nick Johnstone & Ivan Hašcic, 2011. "Technological Change, Fuel Efficiency and Carbon Intensity in Electricity Generation: A Cross-Country Empirical Study," Working Papers 2011.92, Fondazione Eni Enrico Mattei.
  8. Joëlle Noailly & Roger Smeets, 2013. "Directing Technical Change from Fossil-Fuel to Renewable Energy Innovation: An Empirical Application Using Firm-Level Patent Data," CPB Discussion Paper 237, CPB Netherlands Bureau for Economic Policy Analysis.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:11:p:7000-7014. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.