IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v37y2009i2p541-553.html
   My bibliography  Save this article

Technology diffusion and energy intensity in US commercial buildings

Author

Listed:
  • Andrews, Clinton J.
  • Krogmann, Uta

Abstract

This paper analyzes the 1992 and 2003 US Commercial Buildings Energy Consumption Survey microdata files to show the extent to which certain heating, cooling, lighting, and window technologies are entering use, and the resulting impacts on the intensity of energy use. Excepting the case of fluorescent lights, no technology dominates the entire market but instead each conquers a specific niche. Most of the buildings in which these technologies are installed do not have lower-than-average energy intensity, measured as annual energy use per square meter of floor space. The exceptional technology that does measurably correlate with reduced energy intensity is daylighting. These results suggest that technologies are adopted to serve comfort or quality objectives rather than to save energy, or that buildings' users confound the designers' intentions. Decision makers thus should improve operating and maintenance practices, invest in building commissioning, and rely more heavily on passive design features to save energy.

Suggested Citation

  • Andrews, Clinton J. & Krogmann, Uta, 2009. "Technology diffusion and energy intensity in US commercial buildings," Energy Policy, Elsevier, vol. 37(2), pages 541-553, February.
  • Handle: RePEc:eee:enepol:v:37:y:2009:i:2:p:541-553
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00563-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Edgar G. Hertwich, 2005. "Consumption and Industrial Ecology," Journal of Industrial Ecology, Yale University, vol. 9(1‐2), pages 1-6, January.
    2. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    3. Koomey, Jonathan G & Martin, Nathan C & Brown, Marilyn & Price, Lynn K & Levine, Mark D, 1998. "Costs of reducing carbon emissions: US building sector scenarios," Energy Policy, Elsevier, vol. 26(5), pages 433-440, April.
    4. Joseph Huber, 2004. "New Technologies and Environmental Innovation," Books, Edward Elgar Publishing, number 3400.
    5. Mortimer, N D & Ashley, A & Moody, C A C & Rix, J H R & Moss, S A, 1998. "Carbon dioxide savings in the commercial building sector," Energy Policy, Elsevier, vol. 26(8), pages 615-624, July.
    6. Edgar G. Hertwich, 2005. "Consumption and the Rebound Effect: An Industrial Ecology Perspective," Journal of Industrial Ecology, Yale University, vol. 9(1‐2), pages 85-98, January.
    7. Klovdahl, Alden S., 1985. "Social networks and the spread of infectious diseases: The AIDS example," Social Science & Medicine, Elsevier, vol. 21(11), pages 1203-1216, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nelson, Hal T., 2012. "Lost opportunities: Modeling commercial building energy code adoption in the United States," Energy Policy, Elsevier, vol. 49(C), pages 182-191.
    2. Chai, Jian & Guo, Ju-E & Wang, Shou-Yang & Lai, Kin Keung, 2009. "Why does energy intensity fluctuate in China?," Energy Policy, Elsevier, vol. 37(12), pages 5717-5731, December.
    3. Heeren, Niko & Jakob, Martin & Martius, Gregor & Gross, Nadja & Wallbaum, Holger, 2013. "A component based bottom-up building stock model for comprehensive environmental impact assessment and target control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 45-56.
    4. Egging, Ruud, 2013. "Drivers, trends, and uncertainty in long-term price projections for energy management in public buildings," Energy Policy, Elsevier, vol. 62(C), pages 617-624.
    5. Khanam, Momtaj & Daim, Tugrul, 2021. "A market diffusion potential (MDP) assessment model for residential energy efficient (EE) technologies in the U.S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    6. Juaidi, Adel & AlFaris, Fadi & Montoya, Francisco G. & Manzano-Agugliaro, Francisco, 2016. "Energy benchmarking for shopping centers in Gulf Coast region," Energy Policy, Elsevier, vol. 91(C), pages 247-255.
    7. Liu, Pei & Pistikopoulos, Efstratios N. & Li, Zheng, 2010. "An energy systems engineering approach to the optimal design of energy systems in commercial buildings," Energy Policy, Elsevier, vol. 38(8), pages 4224-4231, August.
    8. Constantine Kontokosta, 2015. "A Market-Specific Methodology for a Commercial Building Energy Performance Index," The Journal of Real Estate Finance and Economics, Springer, vol. 51(2), pages 288-316, August.
    9. Qiu, Yueming & Kahn, Matthew E., 2019. "Impact of voluntary green certification on building energy performance," Energy Economics, Elsevier, vol. 80(C), pages 461-475.
    10. Reiche, Danyel, 2013. "Climate policies in the U.S. at the stakeholder level: A case study of the National Football League," Energy Policy, Elsevier, vol. 60(C), pages 775-784.
    11. Yamaguchi, Yohei & Kim, Bumjoon & Kitamura, Takuya & Akizawa, Kotone & Chen, Hemiao & Shimoda, Yoshiyuki, 2022. "Building stock energy modeling considering building system composition and long-term change for climate change mitigation of commercial building stocks," Applied Energy, Elsevier, vol. 306(PA).
    12. Huang, Junbing & Lian, Shijia & Qu, Ran & Luan, Bingjiang & Wang, Yajun, 2023. "Investigating the role of enterprises' property rights in China's provincial industrial energy intensity," Energy, Elsevier, vol. 282(C).
    13. Jennings, Mark G., 2013. "A smarter plan? A policy comparison between Great Britain and Ireland's deployment strategies for rolling out new metering technologies," Energy Policy, Elsevier, vol. 57(C), pages 462-468.
    14. Nora Harris & Tripp Shealy & Leidy Klotz, 2016. "Choice Architecture as a Way to Encourage a Whole Systems Design Perspective for More Sustainable Infrastructure," Sustainability, MDPI, vol. 9(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uddin, Main & Wang, Liang Choon & Smyth, Russell, 2021. "Do government-initiated energy comparison sites encourage consumer search and lower prices? Evidence from an online randomized controlled experiment in Australia," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 167-182.
    2. Xie, Yang & Zilberman, David, 2015. "Water Storage Capacities versus Water Use Efficiency: Substitutes or Complements?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205439, Agricultural and Applied Economics Association.
    3. Lin Fang & Fengping Wu & Yantuan Yu & Lin Zhang, 2020. "Irrigation technology and water rebound in China's agricultural sector," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1088-1100, October.
    4. Barkemeyer, Ralf & Young, C. William & Chintakayala, Phani Kumar & Owen, Anne, 2023. "Eco-labels, conspicuous conservation and moral licensing: An indirect behavioural rebound effect," Ecological Economics, Elsevier, vol. 204(PA).
    5. Jaehn, Florian & Meissner, Finn, 2022. "The rebound effect in transportation," Omega, Elsevier, vol. 108(C).
    6. Belaïd, Fateh & Youssef, Adel Ben & Lazaric, Nathalie, 2020. "Scrutinizing the direct rebound effect for French households using quantile regression and data from an original survey," Ecological Economics, Elsevier, vol. 176(C).
    7. Font Vivanco, David & McDowall, Will & Freire-González, Jaume & Kemp, René & van der Voet, Ester, 2016. "The foundations of the environmental rebound effect and its contribution towards a general framework," Ecological Economics, Elsevier, vol. 125(C), pages 60-69.
    8. Kagawa, Shigemi & Nansai, Keisuke & Kudoh, Yuki, 2009. "Does product lifetime extension increase our income at the expense of energy consumption?," Energy Economics, Elsevier, vol. 31(2), pages 197-210.
    9. Figge, Frank & Thorpe, Andrea Stevenson, 2019. "The symbiotic rebound effect in the circular economy," Ecological Economics, Elsevier, vol. 163(C), pages 61-69.
    10. Blum, Bianca & Hübner, Julian & Müller, Sarah & Neumärker, Karl Justus Bernhard, 2018. "Challenges for sustainable environmental policy: Influencing factors of the rebound effect in energy efficiency improvements," The Constitutional Economics Network Working Papers 02-2018, University of Freiburg, Department of Economic Policy and Constitutional Economic Theory.
    11. Oikonomou, V. & Becchis, F. & Steg, L. & Russolillo, D., 2009. "Energy saving and energy efficiency concepts for policy making," Energy Policy, Elsevier, vol. 37(11), pages 4787-4796, November.
    12. de Haan, Peter & Mueller, Michel G. & Peters, Anja, 2006. "Does the hybrid Toyota Prius lead to rebound effects? Analysis of size and number of cars previously owned by Swiss Prius buyers," Ecological Economics, Elsevier, vol. 58(3), pages 592-605, June.
    13. Huang, Lizhen & Bohne, Rolf André & Lohne, Jardar, 2015. "Shelter and residential building energy consumption within the 450 ppm CO2eq constraints in different climate zones," Energy, Elsevier, vol. 90(P1), pages 965-979.
    14. David Font Vivanco & René Kemp & Ester Voet & Reinout Heijungs, 2014. "Using LCA-based Decomposition Analysis to Study the Multidimensional Contribution of Technological Innovation to Environmental Pressures," Journal of Industrial Ecology, Yale University, vol. 18(3), pages 380-392, May.
    15. Estrella Trincado & Antonio Sánchez-Bayón & José María Vindel, 2021. "The European Union Green Deal: Clean Energy Wellbeing Opportunities and the Risk of the Jevons Paradox," Energies, MDPI, vol. 14(14), pages 1-23, July.
    16. Galvin, Ray, 2020. "Who co-opted our energy efficiency gains? A sociology of macro-level rebound effects and US car makers," Energy Policy, Elsevier, vol. 142(C).
    17. David Font Vivanco & Jaume Freire‐González & Ray Galvin & Tilman Santarius & Hans Jakob Walnum & Tamar Makov & Serenella Sala, 2022. "Rebound effect and sustainability science: A review," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1543-1563, August.
    18. Liu, Jingru & Sun, Xin & Lu, Bin & Zhang, Yunkun & Sun, Rui, 2016. "The life cycle rebound effect of air-conditioner consumption in China," Applied Energy, Elsevier, vol. 184(C), pages 1026-1032.
    19. Michael Huesemann & Joyce Huesemann, 2008. "Will progress in science and technology avert or accelerate global collapse? A critical analysis and policy recommendations," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 10(6), pages 787-825, December.
    20. Arvesen, Anders & Bright, Ryan M. & Hertwich, Edgar G., 2011. "Considering only first-order effects? How simplifications lead to unrealistic technology optimism in climate change mitigation," Energy Policy, Elsevier, vol. 39(11), pages 7448-7454.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:37:y:2009:i:2:p:541-553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.