IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v36y2008i6p2265-2278.html
   My bibliography  Save this article

Expanding electricity capacity in Thailand to meet the twin challenges of supply security and environmental protection

Author

Listed:
  • Nakawiro, Thanawat
  • Bhattacharyya, Subhes C.
  • Limmeechokchai, Bundit

Abstract

Rapid growth in electricity demand in Thailand is a major challenge for electric utilities trying to ensure adequate supply. Continued reliance on natural gas for power supply makes the supply mix non-diversified and exposes the country to supply risks while a diversification to other fossil fuels imposes additional environmental burdens. To find an acceptable solution to this twin challenge, this paper assesses four scenarios of electricity capacity expansion planning for Thailand for the period between 2011 and 2025 under two different assumptions of fuel prices to reflect the case of international high oil price affecting cost of fuels for power generation in Thailand. It is found that the lowest environmental emissions are obtained from the scenario where power generation is highly dominated by natural gas. In contrast, the least cost electricity generation is achieved from the case if nuclear power plant is added into the Thai power system. Reliance on natural gas for power generation increases the spending on gas purchase as a share of the gross domestic product (GDP)--between 2.38% and 3.61% of (GDP). In addition, fuel import dependence, particularly for natural gas and coal, increases exposing the country to possible price volatility.

Suggested Citation

  • Nakawiro, Thanawat & Bhattacharyya, Subhes C. & Limmeechokchai, Bundit, 2008. "Expanding electricity capacity in Thailand to meet the twin challenges of supply security and environmental protection," Energy Policy, Elsevier, vol. 36(6), pages 2265-2278, June.
  • Handle: RePEc:eee:enepol:v:36:y:2008:i:6:p:2265-2278
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00124-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Malik, Arif S. & Al-Zubeidi, Salem, 2006. "Electricity tariffs based on long-run marginal costs for central grid system of Oman," Energy, Elsevier, vol. 31(12), pages 1703-1714.
    2. Shrestha, Ram M. & Marpaung, Charles O. P., 2005. "Supply- and demand-side effects of power sector planning with demand-side management options and SO2 emission constraints," Energy Policy, Elsevier, vol. 33(6), pages 815-825, April.
    3. Shrestha, Ram M. & Marpaung, Charles O. P., 1999. "Supply- and demand-side effects of carbon tax in the Indonesian power sector: an integrated resource planning analysis," Energy Policy, Elsevier, vol. 27(4), pages 185-194, April.
    4. Nakawiro, Thanawat & Bhattacharyya, Subhes C., 2007. "High gas dependence for power generation in Thailand: The vulnerability analysis," Energy Policy, Elsevier, vol. 35(6), pages 3335-3346, June.
    5. Shrestha, Ram M & Shrestha, Rabin & Bhattacharya, S C, 1998. "Environmental and electricity planning implications of carbon tax and technological constraints in a developing country," Energy Policy, Elsevier, vol. 26(7), pages 527-533, June.
    6. Santisirisomboon, Jerasorn & Limmeechokchai, Bundit & Chungpaibulpatana, Supachart, 2001. "Impacts of biomass power generation and CO2 taxation on electricity generation expansion planning and environmental emissions," Energy Policy, Elsevier, vol. 29(12), pages 975-985, October.
    7. Limmeechokchai, Bundit & Suksuntornsiri, Pawinee, 2007. "Assessment of cleaner electricity generation technologies for net CO2 mitigation in Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(2), pages 315-330, February.
    8. Williams, J.H. & Ghanadan, R., 2006. "Electricity reform in developing and transition countries: A reappraisal," Energy, Elsevier, vol. 31(6), pages 815-844.
    9. Chirarattananon, Surapong & Nirukkanaporn, Supattana, 2006. "Deregulation of ESI and privatization of state electric utilities in Thailand," Energy Policy, Elsevier, vol. 34(16), pages 2521-2531, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kamphol Promjiraprawat & Bundit Limmeechokchai, 2012. "Assessment of Thailand’s Energy Policies and CO 2 Emissions: Analyses of Energy Efficiency Measures and Renewable Power Generation," Energies, MDPI, vol. 5(8), pages 1-20, August.
    2. Martinez, Lauro J. & Lambert, James H. & Karvetski, Christopher W., 2011. "Scenario-informed multiple criteria analysis for prioritizing investments in electricity capacity expansion," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 883-891.
    3. Georgiou, Paraskevas N. & Mavrotas, George & Diakoulaki, Danae, 2011. "The effect of islands' interconnection to the mainland system on the development of renewable energy sources in the Greek power sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2607-2620, August.
    4. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    5. Kalampalikas, Nikolaos G. & Pilavachi, Petros A., 2010. "A model for the development of a power production system in Greece, Part I: Where RES do not meet EU targets," Energy Policy, Elsevier, vol. 38(11), pages 6499-6513, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nakawiro, Thanawat & Bhattacharyya, Subhes C. & Limmeechokchai, Bundit, 2008. "Electricity capacity expansion in Thailand: An analysis of gas dependence and fuel import reliance," Energy, Elsevier, vol. 33(5), pages 712-723.
    2. Nakawiro, Thanawat & Bhattacharyya, Subhes C., 2007. "High gas dependence for power generation in Thailand: The vulnerability analysis," Energy Policy, Elsevier, vol. 35(6), pages 3335-3346, June.
    3. Shree Shakya & S. Kumar & Ram Shrestha, 2012. "Co-benefits of a carbon tax in Nepal," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(1), pages 77-101, January.
    4. Nguyen, Nhan T. & Ha-Duong, Minh, 2009. "Economic potential of renewable energy in Vietnam's power sector," Energy Policy, Elsevier, vol. 37(5), pages 1601-1613, May.
    5. Sk Uddin & Ros Taplin & Xiaojiang Yu, 2010. "Towards a sustainable energy future—exploring current barriers and potential solutions in Thailand," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 12(1), pages 63-87, February.
    6. Nhan Thanh Nguyen & Minh Ha-Duong, 2009. "The potential for mitigation of CO2 emissions in Vietnam's power sector," Post-Print halshs-00441085, HAL.
    7. Sawangphol, Narumitr & Pharino, Chanathip, 2011. "Status and outlook for Thailand's low carbon electricity development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 564-573, January.
    8. Teddy Lazebnik & Tzach Fleischer & Amit Yaniv-Rosenfeld, 2023. "Benchmarking Biologically-Inspired Automatic Machine Learning for Economic Tasks," Sustainability, MDPI, vol. 15(14), pages 1-9, July.
    9. Shrestha, Ram M. & Pradhan, Shreekar, 2010. "Co-benefits of CO2 emission reduction in a developing country," Energy Policy, Elsevier, vol. 38(5), pages 2586-2597, May.
    10. Imam, M. & Jamasb, T. & Llorca, M. & Llorca, M., 2018. "Power Sector Reform and Corruption: Evidence from Electricity Industry in Sub-Saharan Africa," Cambridge Working Papers in Economics 1801, Faculty of Economics, University of Cambridge.
    11. Kwag, Kyuhyeong & Shin, Hansol & Oh, Hyobin & Yun, Sangmin & Kim, Tae Hyun & Hwang, Pyeong-Ik & Kim, Wook, 2023. "Bilevel programming approach for the quantitative analysis of renewable portfolio standards considering the electricity market," Energy, Elsevier, vol. 263(PD).
    12. Huang, Shih-Chieh & Lo, Shang-Lien & Lin, Yen-Ching, 2013. "Application of a fuzzy cognitive map based on a structural equation model for the identification of limitations to the development of wind power," Energy Policy, Elsevier, vol. 63(C), pages 851-861.
    13. Backhaus, Klaus & Gausling, Philipp & Hildebrand, Luise, 2015. "Comparing the incomparable: Lessons to be learned from models evaluating the feasibility of Desertec," Energy, Elsevier, vol. 82(C), pages 905-913.
    14. Erkan Erdogdu, 2014. "The Political Economy of Electricity Market Liberalization: A Cross-country Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    15. Cowan, Kelly R. & Daim, Tugrul U., 2011. "Review of technology acquisition and adoption research in the energy sector," Technology in Society, Elsevier, vol. 33(3), pages 183-199.
    16. Joyeeta Gupta, 2001. "India and Climate Change Policy: Between Diplomatic Defensiveness and Industrial Transformation," Energy & Environment, , vol. 12(2-3), pages 217-236, March.
    17. Lucy Baker, 2016. "Post-apartheid electricity policy and the emergence of South Africa's renewable energy sector," WIDER Working Paper Series wp-2016-15, World Institute for Development Economic Research (UNU-WIDER).
    18. Vincent Bertrand, 2013. "Switching to biomass co-firing in European coal power plants: Estimating the biomass and CO2 breakeven prices," Economics Bulletin, AccessEcon, vol. 33(2), pages 1535-1546.
    19. Weijiang Liu & Yangyang Li & Tingting Liu & Min Liu & Hai Wei, 2021. "How to Promote Low-Carbon Economic Development? A Comprehensive Assessment of Carbon Tax Policy in China," IJERPH, MDPI, vol. 18(20), pages 1-16, October.
    20. Nepal, Rabindra & Jamasb, Tooraj, 2012. "Reforming the power sector in transition: Do institutions matter?," Energy Economics, Elsevier, vol. 34(5), pages 1675-1682.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:36:y:2008:i:6:p:2265-2278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.