IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v36y2008i6p1927-1936.html
   My bibliography  Save this article

Atmospheric stabilization of CO2 emissions: Near-term reductions and absolute versus intensity-based targets

Author

Listed:
  • Timilsina, Govinda R.

Abstract

This study analyzes CO2 emissions reduction targets for various countries and geopolitical regions by the year 2030 to stabilize atmospheric concentrations of CO2 at 450Â ppm (550Â ppm including non-CO2 greenhouse gases) level. It also determines CO2 intensity cuts that would be required in those countries and regions if the emission reductions were to be achieved through intensity-based targets without curtailing their expected economic growth. Considering that the stabilization of CO2 concentrations at 450Â ppm requires the global trend of CO2 emissions to be reversed before 2030, this study develops two scenarios: reversing the global CO2 trend in (i) 2020 and (ii) 2025. The study shows that global CO2 emissions would be limited at 42 percent above 1990 level in 2030 if the increasing trend of global CO2 emissions were to be reversed by 2020. If reversing the trend is delayed by 5 years, global CO2 emissions in 2030 would be 52 percent higher than the 1990 level. The study also finds that to achieve these targets while maintaining expected economic growth, the global average CO2 intensity would require a 68 percent drop from the 1990 level or a 60 percent drop from the 2004 level by 2030.

Suggested Citation

  • Timilsina, Govinda R., 2008. "Atmospheric stabilization of CO2 emissions: Near-term reductions and absolute versus intensity-based targets," Energy Policy, Elsevier, vol. 36(6), pages 1927-1936, June.
  • Handle: RePEc:eee:enepol:v:36:y:2008:i:6:p:1927-1936
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00083-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ferdinand A. Gul & Judy S. L. Tsui, 2004. "Introduction and overview," Palgrave Macmillan Books, in: The Governance of East Asian Corporations, chapter 1, pages 1-26, Palgrave Macmillan.
    2. Wang, Can & Chen, Jining & Zou, Ji, 2005. "Decomposition of energy-related CO2 emission in China: 1957–2000," Energy, Elsevier, vol. 30(1), pages 73-83.
    3. Weyant, John P., 2004. "Introduction and overview," Energy Economics, Elsevier, vol. 26(4), pages 501-515, July.
    4. Kopp, Raymond J., 2004. "Near-Term Greenhouse Gas Emissions Targets," Discussion Papers 10818, Resources for the Future.
    5. John P. Weyant, Francisco C. de la Chesnaye, and Geoff J. Blanford, 2006. "Overview of EMF-21: Multigas Mitigation and Climate Policy," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 1-32.
    6. Lee, Kihoon & Oh, Wankeun, 2006. "Analysis of CO2 emissions in APEC countries: A time-series and a cross-sectional decomposition using the log mean Divisia method," Energy Policy, Elsevier, vol. 34(17), pages 2779-2787, November.
    7. Kopp, Raymond, 2004. "Near-Term Greenhouse Gas Emissions Targets," RFF Working Paper Series dp-04-41, Resources for the Future.
    8. A. Denny Ellerman & Ian Sue Wing, 2003. "Absolute versus intensity-based emission caps," Climate Policy, Taylor & Francis Journals, vol. 3(sup2), pages 7-20, December.
    9. Michael Grubb, Carlo Carraro and John Schellnhuber, 2006. "Technological Change for Atmospheric Stabilization: Introductory Overview to the Innovation Modeling Comparison Project," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 1-16.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timilsina, Govinda R., 2012. "Economic implications of moving toward global convergence on emission intensities," Policy Research Working Paper Series 6115, The World Bank.
    2. Edvardsson Björnberg, Karin, 2013. "Rational climate mitigation goals," Energy Policy, Elsevier, vol. 56(C), pages 285-292.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tol, Richard S.J., 2012. "A cost–benefit analysis of the EU 20/20/2020 package," Energy Policy, Elsevier, vol. 49(C), pages 288-295.
    2. Tol, Richard S.J., 2013. "Targets for global climate policy: An overview," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 911-928.
    3. Tavoni, Massimo & Tol, Richard S. J., 2009. "Counting Only the Hits? The Risk of Underestimating the Costs of Stringent Climate Policy," Papers WP324, Economic and Social Research Institute (ESRI).
    4. Pizer, William A., 2005. "Climate Policy Design under Uncertainty," Discussion Papers 10584, Resources for the Future.
    5. Joseph E. Aldy & William A. Pizer, 2009. "Issues in Designing U.S. Climate Change Policy," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 179-210.
    6. Morgan Bazilian & Patrick Nussbaumer & Hans-Holger Rogner & Abeeku Brew-Hammond & Vivien Foster & Shonali Pachauri & Eric Williams & Mark Howells & Philippe Niyongabo & Lawrence Musaba & Brian Ó Galla, 2011. "Energy Access Scenarios to 2030 for the Power Sector in Sub-Saharan Africa," Working Papers 2011.68, Fondazione Eni Enrico Mattei.
    7. Dai, Hancheng & Mischke, Peggy & Xie, Xuxuan & Xie, Yang & Masui, Toshihiko, 2016. "Closing the gap? Top-down versus bottom-up projections of China’s regional energy use and CO2 emissions," Applied Energy, Elsevier, vol. 162(C), pages 1355-1373.
    8. Luca Gerotto & Paolo Pellizzari, 2021. "A replication of Pindyck’s willingness to pay: on the efforts required to obtain results," SN Business & Economics, Springer, vol. 1(5), pages 1-25, May.
    9. Li, Aijun & Hu, Mingming & Wang, Mingjian & Cao, Yinxue, 2016. "Energy consumption and CO2 emissions in Eastern and Central China: A temporal and a cross-regional decomposition analysis," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 284-297.
    10. Richard Tol, 2007. "The double trade-off between adaptation and mitigation for sea level rise: an application of FUND," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(5), pages 741-753, June.
    11. Wissema, Wiepke & Dellink, Rob, 2007. "AGE analysis of the impact of a carbon energy tax on the Irish economy," Ecological Economics, Elsevier, vol. 61(4), pages 671-683, March.
    12. Oskar Lecuyer & Adrien Vogt-Schilb, 2013. "Assessing and ordering investments in polluting fossil-fueled and zero-carbon capital," CIRED Working Papers hal-00850680, HAL.
    13. Liu, Gengyuan & Hao, Yan & Zhou, Yun & Yang, Zhifeng & Zhang, Yan & Su, Meirong, 2016. "China's low-carbon industrial transformation assessment based on Logarithmic Mean Divisia Index model," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 156-170.
    14. Renaud Coulomb & Oskar Lecuyer & Adrien Vogt-Schilb, 2019. "Optimal Transition from Coal to Gas and Renewable Power Under Capacity Constraints and Adjustment Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 557-590, June.
    15. Wang, Ke & Wang, Can & Chen, Jining, 2009. "Analysis of the economic impact of different Chinese climate policy options based on a CGE model incorporating endogenous technological change," Energy Policy, Elsevier, vol. 37(8), pages 2930-2940, August.
    16. Larson, Donald F. & Breustedt, Gunnar, 2007. "Will markets direct investments under the Kyoto Protocol ?," Policy Research Working Paper Series 4131, The World Bank.
    17. Richard S.J. Tol, 2008. "Why Worry About Climate Change? A Research Agenda," Environmental Values, White Horse Press, vol. 17(4), pages 437-470, November.
    18. Ignaciuk, Adriana M. & Dellink, Rob B., 2006. "Biomass and multi-product crops for agricultural and energy production--an AGE analysis," Energy Economics, Elsevier, vol. 28(3), pages 308-325, May.
    19. Pan, Hengyu & Geng, Yong & Jiang, Ping & Dong, Huijuan & Sun, Lu & Wu, Rui, 2018. "An emergy based sustainability evaluation on a combined landfill and LFG power generation system," Energy, Elsevier, vol. 143(C), pages 310-322.
    20. Wang, Chunhua, 2013. "Differential output growth across regions and carbon dioxide emissions: Evidence from U.S. and China," Energy, Elsevier, vol. 53(C), pages 230-236.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:36:y:2008:i:6:p:1927-1936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.