IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v36y2008i10p3814-3822.html
   My bibliography  Save this article

Stagnating energy efficiency in the Swedish building sector--Economic and organisational explanations

Author

Listed:
  • Nässén, Jonas
  • Sprei, Frances
  • Holmberg, John

Abstract

The development towards higher energy efficiency in the Swedish building sector stagnated in the late 1980s and 1990s. In new buildings the average specific energy use for heating is twice as high as in the best performing buildings 20 years ago. By combining econometric studies and interviews with actors in the building sector we analyse the underlying economic and organisational causes for this development. In the stock of buildings, specific energy use for heating (kWh/m2/yr) has a high correlation with increasing energy prices and price elasticities have not changed markedly over time. This implies that the stagnation to a large extent can be explained by energy price trends. On the contrary, in new buildings the correlation between energy prices and specific energy use is much weaker. One important cause of low sensitivity to price changes is that information about the life cycle cost (LCC) of different investment alternatives is often not available to the involved actors. The most common investment criterion is instead the requirements of the national building energy standard which has developed into a norm rather than a minimum for energy performance. In this paper we also discuss potential improvements in the learning processes within the sector.

Suggested Citation

  • Nässén, Jonas & Sprei, Frances & Holmberg, John, 2008. "Stagnating energy efficiency in the Swedish building sector--Economic and organisational explanations," Energy Policy, Elsevier, vol. 36(10), pages 3814-3822, October.
  • Handle: RePEc:eee:enepol:v:36:y:2008:i:10:p:3814-3822
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00346-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert S. Pindyck, 1979. "The Structure of World Energy Demand," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262661772, December.
    2. Nesbakken, Runa, 2001. " Energy Consumption for Space Heating: A Discrete-Continuous Approach," Scandinavian Journal of Economics, Wiley Blackwell, vol. 103(1), pages 165-184, March.
    3. Dunstan, Roger H. & Schmidt, Ronald H., 1988. "Structural changes in residential energy demand," Energy Economics, Elsevier, vol. 10(3), pages 206-212, July.
    4. Lundin, Rolf A. & Söderholm, Anders, 1995. "A theory of the temporary organization," Scandinavian Journal of Management, Elsevier, vol. 11(4), pages 437-455, December.
    5. Newell, Richard G & Stavins, Robert N, 2003. "Cost Heterogeneity and the Potential Savings from Market-Based Policies," Journal of Regulatory Economics, Springer, vol. 23(1), pages 43-59, January.
    6. DeCanio, Stephen J, 1998. "The efficiency paradox: bureaucratic and organizational barriers to profitable energy-saving investments," Energy Policy, Elsevier, vol. 26(5), pages 441-454, April.
    7. Jerry A. Hausman, 1979. "Individual Discount Rates and the Purchase and Utilization of Energy-Using Durables," Bell Journal of Economics, The RAND Corporation, vol. 10(1), pages 33-54, Spring.
    8. Nassen, Jonas & Holmberg, John, 2005. "Energy efficiency--a forgotten goal in the Swedish building sector?," Energy Policy, Elsevier, vol. 33(8), pages 1037-1051, May.
    9. Jaffe, Adam B. & Stavins, Robert N., 1994. "The energy paradox and the diffusion of conservation technology," Resource and Energy Economics, Elsevier, vol. 16(2), pages 91-122, May.
    10. Haas, Reinhard & Schipper, Lee, 1998. "Residential energy demand in OECD-countries and the role of irreversible efficiency improvements," Energy Economics, Elsevier, vol. 20(4), pages 421-442, September.
    11. Train, Kenneth, 1985. "Discount rates in consumers' energy-related decisions: A review of the literature," Energy, Elsevier, vol. 10(12), pages 1243-1253.
    12. Dahl, Carol & Sterner, Thomas, 1991. "Analysing gasoline demand elasticities: a survey," Energy Economics, Elsevier, vol. 13(3), pages 203-210, July.
    13. Daan van Soest & Erwin Bulte, 2001. "Does the Energy-Efficiency Paradox Exist? Technological Progress and Uncertainty," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 18(1), pages 101-112, January.
    14. Sorrell, Steve, 2003. "Making the link: climate policy and the reform of the UK construction industry," Energy Policy, Elsevier, vol. 31(9), pages 865-878, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nair, Gireesh & Gustavsson, Leif & Mahapatra, Krushna, 2010. "Factors influencing energy efficiency investments in existing Swedish residential buildings," Energy Policy, Elsevier, vol. 38(6), pages 2956-2963, June.
    2. Intaek Yoon & YeonSang Lee & Sohyun Kate Yoon, 2017. "An empirical analysis of energy efficiency measures applicable to cities, regions, and local governments, based on the case of South Korea’s local energy saving program," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(6), pages 863-878, August.
    3. Nair, Gireesh & Gustavsson, Leif & Mahapatra, Krushna, 2010. "Owners perception on the adoption of building envelope energy efficiency measures in Swedish detached houses," Applied Energy, Elsevier, vol. 87(7), pages 2411-2419, July.
    4. Barbetta, Gian Paolo & Canino, Paolo & Cima, Stefano, 2015. "The impact of energy audits on energy efficiency investment of public owners. Evidence from Italy," Energy, Elsevier, vol. 93(P1), pages 1199-1209.
    5. Pernilla Gluch & Stina Månsson, 2021. "Taking Lead for Sustainability: Environmental Managers as Institutional Entrepreneurs," Sustainability, MDPI, vol. 13(7), pages 1-18, April.
    6. Vaibhav Chaturvedi & Priyadarshi Shukla, 2014. "Role of energy efficiency in climate change mitigation policy for India: assessment of co-benefits and opportunities within an integrated assessment modeling framework," Climatic Change, Springer, vol. 123(3), pages 597-609, April.
    7. Josefin Borg & Anna Yström, 2020. "Collaborating for energy efficiency in Swedish shipping industry: interrelating practice and challenges," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4289-4310, June.
    8. Harmsen, Robert & Graus, Wina, 2013. "How much CO2 emissions do we reduce by saving electricity? A focus on methods," Energy Policy, Elsevier, vol. 60(C), pages 803-812.
    9. Ó Broin, Eoin & Nässén, Jonas & Johnsson, Filip, 2015. "Energy efficiency policies for space heating in EU countries: A panel data analysis for the period 1990–2010," Applied Energy, Elsevier, vol. 150(C), pages 211-223.
    10. Eva Valeri & Amanda Stathopoulos & Edoardo Marcucci, 2012. "Energy Efficiency In The Transport Sector: Policy Evolution In Some European Countries," Working Papers 0312, CREI Università degli Studi Roma Tre, revised 2012.
    11. Mata, Érika & Sasic Kalagasidis, Angela & Johnsson, Filip, 2013. "Energy usage and technical potential for energy saving measures in the Swedish residential building stock," Energy Policy, Elsevier, vol. 55(C), pages 404-414.
    12. Groesser, Stefan N., 2014. "Co-evolution of legal and voluntary standards: Development of energy efficiency in Swiss residential building codes," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 1-16.
    13. Aydin, Erdal & Brounen, Dirk, 2019. "The impact of policy on residential energy consumption," Energy, Elsevier, vol. 169(C), pages 115-129.
    14. Ó Broin, Eoin & Nässén, Jonas & Johnsson, Filip, 2015. "The influence of price and non-price effects on demand for heating in the EU residential sector," Energy, Elsevier, vol. 81(C), pages 146-158.
    15. Horváth, Áron & Kiss, Hubert János & McLean, Aliz, 2013. "Hat-e a lakóingatlanok árára az energiahatékonyság? [Does energy efficiency affect the prices of residential units?]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(9), pages 1025-1042.
    16. Annunziata, Eleonora & Rizzi, Francesco & Frey, Marco, 2014. "Enhancing energy efficiency in public buildings: The role of local energy audit programmes," Energy Policy, Elsevier, vol. 69(C), pages 364-373.
    17. Brounen, Dirk & Kok, Nils, 2011. "On the economics of energy labels in the housing market," Journal of Environmental Economics and Management, Elsevier, vol. 62(2), pages 166-179, September.
    18. Schade, Jutta & Wallström, Peter & Olofsson, Thomas & Lagerqvist, Ove, 2013. "A comparative study of the design and construction process of energy efficient buildings in Germany and Sweden," Energy Policy, Elsevier, vol. 58(C), pages 28-37.
    19. Nässén, Jonas & Holmberg, John, 2013. "On the potential trade-offs between energy supply and end-use technologies for residential heating," Energy Policy, Elsevier, vol. 59(C), pages 470-480.
    20. Kanters, Jouri & Wall, Maria, 2016. "A planning process map for solar buildings in urban environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 173-185.
    21. Strebel, Felix, 2011. "Inter-governmental institutions as promoters of energy policy diffusion in a federal setting," Energy Policy, Elsevier, vol. 39(1), pages 467-476, January.
    22. Eoin Ó Broin & Érika Mata & Jonas Nässén & Filip Johnsson, 2015. "Quantification of the Energy Efficiency Gap in the Swedish Residential Sector," Post-Print hal-01219283, HAL.
    23. Carlsson, Mattias, 2012. "Bioenergy from the Swedish Forest Sector - A Partial Equilibrium Analysis of Supply Costs and Implications for the Forest Product Markets," Working Paper Series 2012:3, Swedish University of Agricultural Sciences, Department Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jia & Just, Richard E., 2018. "Modeling household energy consumption and adoption of energy efficient technology," Energy Economics, Elsevier, vol. 72(C), pages 404-415.
    2. Pedro Linares & Xavier Labandeira, 2010. "Energy Efficiency: Economics And Policy," Journal of Economic Surveys, Wiley Blackwell, vol. 24(3), pages 573-592, July.
    3. Giraudet, Louis-Gaëtan & Guivarch, Céline & Quirion, Philippe, 2012. "Exploring the potential for energy conservation in French households through hybrid modeling," Energy Economics, Elsevier, vol. 34(2), pages 426-445.
    4. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    5. Ansar, Jasmin & Sparks, Roger, 2009. "The experience curve, option value, and the energy paradox," Energy Policy, Elsevier, vol. 37(3), pages 1012-1020, March.
    6. Chen Wang & Ricardo Daziano, 2015. "On the problem of measuring discount rates in intertemporal transportation choices," Transportation, Springer, vol. 42(6), pages 1019-1038, November.
    7. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2017. "Assessing the Energy-Efficiency Gap," Journal of Economic Literature, American Economic Association, vol. 55(4), pages 1486-1525, December.
    8. Arlan Brucal & Michael Roberts, 2015. "Can Energy Efficiency Standards Reduce Prices and Improve Quality? Evidence from the US Clothes Washer Market," Working Papers 2015-5, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    9. Stavins, Robert & Jaffe, Adam & Newell, Richard, 2000. "Technological Change and the Environment," Working Paper Series rwp00-002, Harvard University, John F. Kennedy School of Government.
    10. Schleich, Joachim & Gassmann, Xavier & Faure, Corinne & Meissner, Thomas, 2016. "Making the implicit explicit: A look inside the implicit discount rate," Energy Policy, Elsevier, vol. 97(C), pages 321-331.
    11. Häckel, Björn & Pfosser, Stefan & Tränkler, Timm, 2017. "Explaining the energy efficiency gap - Expected Utility Theory versus Cumulative Prospect Theory," Energy Policy, Elsevier, vol. 111(C), pages 414-426.
    12. Daziano, Ricardo A., 2015. "Inference on mode preferences, vehicle purchases, and the energy paradox using a Bayesian structural choice model," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 1-26.
    13. Erdogdu, Erkan, 2007. "Electricity demand analysis using cointegration and ARIMA modelling: A case study of Turkey," Energy Policy, Elsevier, vol. 35(2), pages 1129-1146, February.
    14. Ward, David O. & Clark, Christopher D. & Jensen, Kimberly L. & Yen, Steven T. & Russell, Clifford S., 2011. "Factors influencing willingness-to-pay for the ENERGY STAR® label," Energy Policy, Elsevier, vol. 39(3), pages 1450-1458, March.
    15. Brucal, Arlan & Roberts, Michael J., 2019. "Do energy efficiency standards hurt consumers? Evidence from household appliance sales," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 88-107.
    16. Erdogdu, Erkan, 2010. "Natural gas demand in Turkey," Applied Energy, Elsevier, vol. 87(1), pages 211-219, January.
    17. Stela Rubínová, 2011. "Reakce poptávky domácností po energii na zvyšování energetické účinnosti: teorie a její důsledky pro konstrukci empiricky ověřitelných modelů [Reaction of Household Energy Demand to Improvements in," Politická ekonomie, Prague University of Economics and Business, vol. 2011(3), pages 359-378.
    18. Michael G. Pollitt & Irina Shaorshadze, 2013. "The role of behavioural economics in energy and climate policy," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 24, pages 523-546, Edward Elgar Publishing.
    19. Nicholas Rivers and Leslie Shiell, 2016. "Free-Riding on Energy Efficiency Subsidies: the Case of Natural Gas Furnaces in Canada," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    20. Anderson, Soren T. & Newell, Richard G., 2004. "Information programs for technology adoption: the case of energy-efficiency audits," Resource and Energy Economics, Elsevier, vol. 26(1), pages 27-50, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:36:y:2008:i:10:p:3814-3822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.